

Michel Bierlaire

Introduction to choice models

Usage of the *t*-tests

t-test

Question

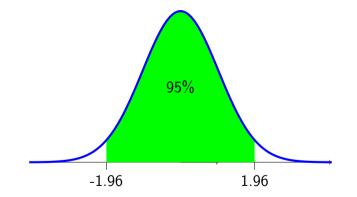
Is the parameter θ significantly different from a given value θ^* ?

- $\blacktriangleright H_0: \theta = \theta^*$
- $\blacktriangleright H_1: \theta \neq \theta^*$

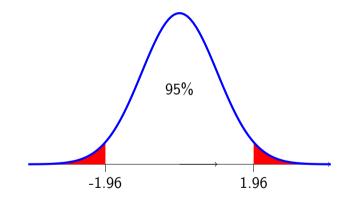
Statistic (assuming maximum likelihood estimator) Under H_0 , if $\hat{\theta}$ is normally distributed with known variance σ^2

$$rac{\hat{ heta} - heta^*}{\sigma} \sim \textit{N}(0, 1).$$

t-test: under H_0



t-test: if the statistic lies outside



 H_0 is rejected at the 5% level.

Applying the test

Statistic

$$P(-1.96 \leq rac{\hat{ heta} - heta^*}{\sigma} \leq 1.96) = 0.95 = 1 - 0.05$$

Decision

 H_0 can be rejected at the 5% level (lpha=0.05) if

$$\left|\frac{\hat{\theta} - \theta^*}{\sigma}\right| \ge 1.96.$$

Comments

- If $\hat{\theta}$ asymptotically normal
- If variance unknown
- A t test should be used with N degrees of freedom.
- When $N \ge 30$, the Student t distribution is well approximated by a N(0,1)

p value

- probability to get a t statistic at least as large (in absolute value) as the one reported, under the null hypothesis
- it is calculated as

$$p=2(1-\Phi(t))$$

where $\Phi(\cdot)$ is the CDF of the standard normal.

 the null hypothesis is rejected when the *p*-value is lower than the significance level (typically 0.05)

Comparing two coefficients Hypothesis

$$H_0:\beta_1=\beta_2.$$

Statistic

$$rac{\widehat{eta}_1 - \widehat{eta}_2}{\sqrt{\mathsf{Var}(\widehat{eta}_1 - \widehat{eta}_2)}}$$

where

$$\mathsf{Var}(\widehat{\beta}_1 - \widehat{\beta}_2) = \mathsf{Var}(\widehat{\beta}_1) + \mathsf{Var}(\widehat{\beta}_2) - 2\,\mathsf{Cov}(\widehat{\beta}_1,\widehat{\beta}_2)$$

Distribution Under H_0 , distributed as N(0, 1).