Testing Specification testing

Michel Bierlaire

Introduction to choice models

Differences from classical hypothesis testing

Classical hypothesis testing: example

Null hypothesis (H_0)

A simple hypothesis contradicting a theoretical assumption.

Lady testing tea

- Theory: a lady is able to tell if the milk has been poured before of after the tea in a cup.
- H_0 : the outcome of the taste is purely random.

Specification testing: example

Null hypothesis (H_0)

A simple hypothesis contradicting a theoretical assumption.

Explanatory variable

- ► Theory: a variable explains the choice behavior.
- H_0 : the coefficient of the variable is zero.

Type I error

Type I error

Type II error

• H_0 rejected and H_0 true.

Type I error

• H_0 rejected and H_0 true.

Type II error

• H_0 accepted and H_0 false.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.

Type II error

• H_0 accepted and H_0 false.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.

- H_0 accepted and H_0 false.
- Omit a relevant variable.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.
- ► Loss of efficiency.

- H_0 accepted and H_0 false.
- Omit a relevant variable.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.
- ► Loss of efficiency.

- H_0 accepted and H_0 false.
- Omit a relevant variable.
- Specification error.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.
- ► Loss of efficiency.
- Cost: C_I .

- H_0 accepted and H_0 false.
- Omit a relevant variable.
- Specification error.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.
- ► Loss of efficiency.
- Cost: C_I .

- H_0 accepted and H_0 false.
- Omit a relevant variable.
- Specification error.
- Cost: $C_{II} >> C_I$.

Type I error

- H_0 rejected and H_0 true.
- Include an irrelevant variable.
- ► Loss of efficiency.
- Cost: C_1 .

Note

In classical hypothesis testing, $C_I \approx C_{II}$

- H_0 accepted and H_0 false.
- Omit a relevant variable.
- Specification error.
- Cost: $C_{II} >> C_I$.

P(Type I) =

5

 $P(Type I) = P(H_0 rejected|H_0 true)$

Probability of an error

$P(Type I) = P(H_0 rejected|H_0 true) P(H_0 true)$

Probability of an error

$P(Type I) = P(H_0 rejected | H_0 true) P(H_0 true)$ α

$$\mathsf{P}(\mathsf{Type} \ \mathsf{I}) = \mathsf{P}(H_0 \ \mathsf{rejected} | H_0 \ \mathsf{true}) \quad \mathsf{P}(H_0 \ \mathsf{true})$$
 $\frac{\alpha}{\lambda}$

$$\begin{array}{rl} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & & & & \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & & \\ \end{array}$$

$$\begin{array}{rcl} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & & & & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) \end{array}$$

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & & & & \\ & & & & \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \end{array}$$

$$\begin{array}{rcl} \mathsf{P}(\mathsf{Type}\ \mathsf{I}) = & \mathsf{P}(H_0\ \mathsf{rejected}|H_0\ \mathsf{true}) & \mathsf{P}(H_0\ \mathsf{true}) \\ & & & & \\ \mathsf{P}(\mathsf{Type}\ \mathsf{II}) = & \mathsf{P}(H_0\ \mathsf{accepted}|H_0\ \mathsf{false}) & \mathsf{P}(H_0\ \mathsf{false}) \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & &$$

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & & & & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost =

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost = $P(Type I) C_I + P(Type II) C_{II}$

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost =
$$P(Type I)$$
 C_I + $P(Type II)$ C_{II}
= $\alpha\lambda$ C_I + $\beta(1-\lambda)$ C_{II}

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost =
$$P(Type I)$$
 C_I + $P(Type II)$ C_{II}
= $\alpha\lambda$ C_I + $\beta(1-\lambda)$ C_{II}

Classical hypothesis testing $\lambda \approx 1$, $C_I \approx C_{II}$

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost =
$$P(Type I)$$
 C_I + $P(Type II)$ C_{II}
= $\alpha\lambda$ C_I + $\beta(1-\lambda)$ C_{II}

Classical hypothesis testing $\lambda \approx 1$, $C_I \approx C_{II}$: prefer small α .

$$\begin{array}{rll} \mathsf{P}(\mathsf{Type}\;\mathsf{I}) = & \mathsf{P}(H_0\;\mathsf{rejected}|H_0\;\mathsf{true}) & \mathsf{P}(H_0\;\mathsf{true}) \\ & \alpha & \lambda \\ \mathsf{P}(\mathsf{Type}\;\mathsf{II}) = & \mathsf{P}(H_0\;\mathsf{accepted}|H_0\;\mathsf{false}) & \mathsf{P}(H_0\;\mathsf{false}) \\ & \beta & (1-\lambda) \end{array}$$

Expected cost

Expected cost =
$$P(Type I)$$
 C_I + $P(Type II)$ C_{II}
= $\alpha\lambda$ C_I + $\beta(1-\lambda)$ C_{II}

Specification testing $\lambda \approx 0.5$, $C_{II} >> C_I$: larger α can be used.