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To derive the logit model, we consider the following ingredients:

• a choice set for each individual n: Cn = {1, . . . , Jn}, and

• a utility function for each individual and each alternative: Uin = Vin +
εin.

We assume that the error terms εin are

• independent, both across alternatives and individuals, and

• Extreme Value distributed, with the same parameters for each individ-
ual and each alternative:

εin ∼ EV(0, µ). (1)

These assumptions are summarized by the statement “i.i.d. Extreme Value”,
where “i.i.d.” stands for independent and identically distributed.

The choice model is

P (i|Cn) = Pr(Vin + εin ≥ max
j=1,...,Jn

Vjn + εjn). (2)

The idea of the derivation is to consider this model as a binary logit model, as
we have already derived its specification. In order to be chosen, alternative
i must have a utility larger than all other alternatives. Now, consider within
the set Cn \ {i} composed of the other alternatives, the one associated with
the highest utility. We do not know which specific alternative achieves this,
but we know that its utility is

U∗
n = max

j∈Cn\{i}
Uin = max

j∈Cn\{i}
(Vjn + εjn). (3)
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Therefore, the choice model can be written:

P (i|Cn) = Pr(Uin ≥ U∗
n), (4)

that involves only two alternatives. In order to derive the choice model, we
need to know the distribution of U∗

n. From a property of the extreme value
distribution (see property 6 in the appendix below), and the fact that all
error terms are i.i.d., we have that

U∗
n ∼ EV





1

µ
ln

∑

j∈Cn\{i}

eµVjn , µ



 . (5)

Equivalently (see property 4 in the appendix), we can write

U∗
n = V ∗

n + ε∗n (6)

where

V ∗
n =

1

µ
ln

Jn
∑

j=2

eµVjn (7)

and
ε∗n ∼ EV(0, µ). (8)

Consequently, (4) is a binary logit model and

P (i|Cn) =
eµVin

eµVin + eµV
∗
n

(9)

where

V ∗
n =

1

µ
ln

∑

j∈Cn\{i}

eµVjn . (10)

We have
eµV

∗
n = eln

∑
j∈Cn\{i} e

µVjn

=
∑

j∈Cn\{i}

eµVjn , (11)

and (9) can be written

P (i|Cn) =
eµVin

eµV1n +
∑

j∈Cn\{i}
eµVjn

, (12)
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to finally obtain
eµVin

∑

j∈Cn
eµVjn

. (13)

This is the logit model. Interestingly, it is a straightforward extension of
the binary logit model, where the sum at the denominator involves now all
alternatives in the choice set.

Properties of the extreme value distribution

The extreme value distribution with location parameter η and scale param-
eter µ has the following properties:

1. The mode is η.

2. The mean is η + γ

µ
, where

γ = −

∫ +∞

0

e−x ln xdx ≈ 0.5772 (14)

is Euler’s constant.

3. The variance is π2

6µ2 .

4. If ε ∼ EV(η,µ) , then

aε+ b ∼ EV(aη + b,
µ

a
),

where a, b ∈ R, a > 0.

5. If εa ∼ EV(ηa, µ) and εb ∼ EV(ηb, µ) are independent with the same
scale parameter µ, then

ε = εa − εb ∼ Logistic(ηa − ηb, µ),

namely

fε(ξ) =
µe−µ(ξ−ηa+ηb)

(1 + e−µ(ξ−ηa+ηb))2
, (15)

Fε(ξ) =
1

1 + e−µ(ξ−ηa+ηb)
, µ > 0,−∞ < ξ < ∞. (16)

(17)
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6. If εi ∼ EV(ηi, µ), for i = 1, . . . , J , and εi are independent with the
same scale parameter µ, then

ε = max
i=1,...,J

εi ∼ EV(η, µ) (18)

where

η =
1

µ
ln

J
∑

i=1

eµηi . (19)

It is important to note that this property holds only if all εi have the
same scale parameter µ. As ε follows an extreme value distribution, its
expected value is

E[ε] = η +
γ

µ
.

Equivalently,

η = E[ε]−
γ

µ
.

Therefore, (19) provides the expected value of the maximum, up to a
constant.
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