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Airline itinerary case

1 Nonlinear specifications

The models studied previously were specified with linear-in-parameter formulations of the de-
terministic parts of the utilities (i.e. parameters that remain constant throughout the whole
range of the values of each variable). However, in some cases, non-linear specifications may be
more justified. In this section, we test three different nonlinear specifications of the deterministic
utility functions: a piecewise linear specification of the time parameter of the non-stop itinerary,
a power series method and Box-Cox transformation.

The base model that we will consider in this section is the one you developed during the previous
session with alternative-specific coefficients for the travel time (MNL airline specific.py). The
deterministic utilities for this model are the following:

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT 1 · Total TT1

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

V2 = ASC2 + βFare · Fare2 + βLegroom · Legroom2 + βTotal TT 2 · Total TT2

+βSchedDE · SchedDE2 + βSchedDL · SchedDL2

V3 = ASC3 + βFare · Fare3 + βLegroom · Legroom3 + βTotal TT 3 · Total TT3

+βSchedDE · SchedDE3 + βSchedDL · SchedDL3

1.1 Piecewise Linear Approximation

File to develop using the airline dataset:
Model file: MNL airline piecewise.py

In this first example, we want to test the hypothesis that the value of the travel time parameter
for the non-stop itinerary alternative assumes different values for different ranges of values
of the variable itself. We split the range of values for the total travel time of alternative 1
Total TT1 ∈ [0.67, 6.35] (TripTimeHours 1 in the data) into three different intervals:

• Total TT1 1 ∈ [0, 2]

• Total TT1 2 ∈ ]2, 3]

• Total TT1 3 > 3

The systematic utility expression for the non-stop alternative is the following:

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT1 1 · Total TT1 1

+βTotal TT1 2 · Total TT1 2 + βTotal TT1 3 · Total TT1 3

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1
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To model the three intervals we need to define in PythonBiogeme three accumulative variables
to represent the total travel time. We use the specification that has been seen in the lecture.
More precisely,

Total TT1 1 =

{
TripT imeHours1 if TripT imeHours1 < 2

2 if TripT imeHours1 ≥ 2
(1)

= min(TripT imeHours1, 2) (2)

Total TT1 2 =


0 if TripT imeHours1 < 2

TripT imeHours2 if 2 ≤ TripT imeHours1 < 3

1 if TripT imeHours1 > 3

(3)

= max(0,min(TripT imeHours1 − 2, 1)) (4)

Total TT1 3 =

{
0 if TripT imeHours1 < 3

TripT imeHours1 − 3 if TripT imeHours1 ≥ 2
(5)

= max(0, T ripT imeHours1 − 3) (6)

It is easy to see that the previous specification represents the total travel time. For instance,
consider an individual with a travel time of TripT imeHours1 = 2.5. In this case, the three
variables will be calculated as follows:

1. Total TT1 1 = min(TripT imeHours1, 2) = min(2.5, 2) = 2

2. Total TT1 2 = max(0,min(TripT imeHours1−2, 1))) = max(0,min(0.5, 1)) = max(0, 0.5) =
0.5

3. Total TT1 3 = max(0, T ripT imeHours1 − 3) = max(0,−0.5) = 0

Thus, the original value of the travel time (TripT imeHours1) is decomposed into the three
variables (TripT imeHours1 = Total TT1 1 + Total TT1 2 + Total TT1 3). You can easily de-
fine these three variables in PythonBiogeme with the instruction DefineVariable by using the
formulations (2), (4) and (6).

The estimation results for this specification are shown in Table 1. All time coefficients related to
the piecewise linear expression are negative. The coefficient associated with short trips (shorter
than 2 hours) is the largest in absolute value, meaning that the same increase of travel time
penalizes the utility of the non-stop alternative more if the trip is shorter than 2 hours than
if is longer than 2 hours. Similarly, the coefficient associated with trips with an intermediate
duration (between 2 and 3 hours) penalizes more the utility of the non-stop alternative than if
the trip lasts longer than 3 hours.
We perform a likelihood ratio test where the restricted model is the one with linear travel time for
the non-stop alternative (MNL airline specific.py) and the unrestricted model is the piecewise
linear specification (MNL airline piecewise.py). The null hypothesis is given as follows:

H0 : βTotal TT1 1 = βTotal TT1 2 = βTotal TT1 3

The statistic for the likelihood ratio test is the following:

−2(−2320.447 + 2315.041) = 10.812

Since χ2
0.95,2 = 5.99, we can reject the null hypothesis of a linear travel time for the non-stop

alternative at a 95% level of confidence.
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Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC2 -2.32 0.411 -5.65 0.00
2 ASC3 -2.55 0.438 -5.83 0.00
3 βFare -0.0193 0.000799 -24.10 0.00
4 βLegroom 0.227 0.0267 8.51 0.00
5 βSchedDE -0.140 0.0165 -8.47 0.00
6 βSchedDL -0.105 0.0137 -7.64 0.00
7 βTotal TT1 1 -0.824 0.238 -3.46 0.00
8 βTotal TT1 2 -0.444 0.188 -2.36 0.02
9 βTotal TT1 3 -0.229 0.0889 -2.57 0.01

10 βTotal TT2 -0.301 0.0701 -4.29 0.00
11 βTotal TT3 -0.301 0.0701 -4.29 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 11

L(β0) = −3964.892

L(β̂) = −2315.041

−2[L(β0)− L(β̂)] = 3299.701
ρ2 = 0.416
ρ̄2 = 0.413

Table 1: Airline itinerary piecewise linear model

1.2 The Power Series Expansion

File to develop using the airline dataset:
Model file: MNL airline powerseries.py

We introduce here a power series expansion for the travel time of the non-stop itinerary. Other
polynomial expressions could be tried as well, but in the following example, we only specify a
squared term.

The specification of the model presented in this section is the same as the one in MNL airline specific.py
except for the alternative relative to the non-stop itinerary. The latter is given as follows:

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT1 1 · Total TT1 1

+βTotal TT1 sq · Total TT1 sq + βSchedDE · SchedDE1 + βSchedDL · SchedDL1

In order to define the squared term of Total TT1 in PythonBiogeme, we add the following in-
struction to define it as a variable:

TripTimeHours 1 sq = DefineVariable(’TripTimeHours 1 sq’, TripTimeHours 1 ** 2)

The estimation results for this specification are shown in Table 2. The estimated parameter
associated with the linear term of the power series expansion is negative while the estimated
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parameter associated with the squared term is positive. However, for reasonable travel times,
the cumulative effect of the travel time variable on the utility is still negative, as the coefficient
associated with the power series term is much smaller in absolute value.

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC2 -2.21 0.298 -7.42 0.00
2 ASC3 -2.43 0.312 -7.78 0.00
3 βFare -0.0193 0.000800 -24.11 0.00
4 βLegroom 0.227 0.0267 8.51 0.00
5 βSchedDE -0.139 0.0165 -8.46 0.00
6 βSchedDL -0.105 0.0137 -7.63 0.00
7 βTotal TT1 -0.870 0.172 -5.05 0.00
8 βTotal TT1 sq 0.0745 0.0220 3.38 0.00
9 βTotal TT2 -0.301 0.0701 -4.30 0.00

10 βTotal TT3 -0.302 0.0701 -4.31 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 10

L(β0) = −3964.892

L(β̂) = −2314.435

−2[L(β0)− L(β̂)] = 3300.914
ρ2 = 0.416
ρ̄2 = 0.414

Table 2: Airline itinerary power series model

To see if the power series specification is better than the linear one, we perform a likelihood ratio
test. Here, the restricted model is the one with linear travel time for the non-stop alternative
(MNL airline specific.py) and the unrestricted model is the one with the power series expansion
(MNL airline powerseries.py). The null hypothesis is given by:

H0 : βTotal TT1 sq = 0

The statistic for the likelihood ratio test is given as follows:

−2(−2320.447 + 2314.435) = 12.024

Since χ2
0.95,1 = 3.841, we can reject the null hypothesis of a linear travel time for the non-stop

alternative at a 95% level of confidence.

1.3 The Box-Cox Transformation

File to develop using the airline dataset:
Model file: MNL airline boxcox.py
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In this section, we specify a Box-Cox transformation, which is a non-linear transformation of a
variable that also depends on an unknown parameter λ. Precisely, a Box-Cox transformation of
a variable x is given as follows:

xλ − 1

λ
, where x ≥ 0. (7)

We apply this transformation to the travel time variable for the non-stop itinerary. The utilities
are the same as the previous models, apart from the one relative to the non-stop itinerary, which
we report below:

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT1 ·
Total TT λ1 − 1

λ
+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

Let us note that in this specification, we have one more unknown parameter, λ. In PythonBio-
geme, we define this parameter together with the other parameters of the model:

LAMBDA = Beta(’LAMBDA’,1,-10000,10000,0)

Moreover, the expression (7) for the travel time of alternative 1 is coded as follows:

( ( ( TripTimeHours 1 ** LAMBDA ) - 1 ) / LAMBDA )

The results relative to the model including the Box-Cox transformation are shown in Table 3.
Let us remark that the Box-Cox transformation reduces to a linear function as a special case
when the parameter λ is equal to 1. The estimate of λ is significantly different from 1 at a 95
% level of confidence, with a t-test equal to -3.36.

We perform a likelihood ratio test between the linear model (MNL airline specific.py) and the
Box-Cox model (MNL airline boxcox.py). The null hypothesis is given by:

H0 : λ = 1

The statistic of the likelihood ratio test for this null hypothesis is given as follows:

−2(−2320.447 + 2314.574) = 11.746
χ2
0.95,1 = 3.841 < 11.746

The null hypothesis of a linear specification is hence rejected at a 95 % level of confidence.
Therefore, the Box-Cox transformation of the time is more adequate.

2 Test of Non-Nested Hypotheses: Cox test

Files to use with PythonBiogeme (provided):
Model files: MNL airline specific.py (M1)

MNL airline log.py (M2)
MNL airline composite.py (MC)

Data file: airline.dat
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Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC2 -1.51 0.263 -5.77 0.00
2 ASC3 -1.74 0.280 -6.22 0.00
3 βFare -0.0193 0.000799 -24.12 0.00
4 λ -0.139 0.338 -0.41 0.68
5 βLegroom 0.227 0.0267 8.52 0.00
6 βSchedDE -0.140 0.0165 -8.47 0.00
7 βSchedDL -0.105 0.0137 -7.63 0.00
8 βTotal TT1 -1.24 0.372 -3.34 0.00
9 βTotal TT2 -0.306 0.0681 -4.49 0.00

10 βTotal TT3 -0.306 0.0683 -4.48 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 10

L(β0) = −3964.892

L(β̂) = −2314.574

−2[L(β0)− L(β̂)] = 3300.636
ρ2 = 0.416
ρ̄2 = 0.414

Table 3: Airline itinerary Box Cox model

In discrete choice analysis, we often perform tests based on the so-called nested hypotheses,
which means that we specify two models such that the first one (the restricted model) is a spe-
cial case of the second one (the unrestricted model). For this type of comparison, the classical
likelihood ratio test can be applied. However, there are situations, such as non-linear specifi-
cations, in which we aim at comparing models that are not nested, i.e. one model cannot be
obtained as a restricted version of the other. One way to compare two non-nested models is
to build a composite model from which both models can be derived. We can thus perform two
likelihood ratio tests, testing each of the restricted models against the composite model. This
procedure is known as the Cox test of separate families of hypothesis.

The Cox test is described in detail in the slides of the course. Assume that we want to test a
model M1 against another model M2 (and one model is not a restricted version of the other).
We start by generating a composite model MC such that both models M1 and M2 are restricted
cases of MC . We then test M1 against MC and M2 against MC using the likelihood ratio test.
There are three possible outcomes of this test:

1. One of the two models is rejected. Then we keep the one that is not rejected.

2. Both models are rejected. Then better models should be developed. The composite model
could be used as a new basis for future specifications.

3. Both models are accepted. Then we choose the model with the highest ρ̄2 index.
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We present here the expressions of the utility functions used for three different models M1, M2

and MC developed on the airline itinerary case study. In M1 the fare is linearly included, in M2

the logarithm of the fare is included and in MC both terms are included.

M1 has the following systematic utilities (MNL airline specific.py):

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT1 · Total TT1

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

V2 = ASC2 + βFare · Fare2 + βLegroom · Legroom2 + βTotal TT2 · Total TT2

+βSchedDE · SchedDE2 + βSchedDL · SchedDL2

V3 = ASC3 + βFare · Fare3 + βLegroom · Legroom3 + βTotal TT3 · Total TT3

+βSchedDE · SchedDE3 + βSchedDL · SchedDL3

where the cost is linear.

The systematic utilities of M2 are expressed as follows (MNL airline log.py):

V1 = ASC1 + βLogFare · log(Fare1) + βLegroom · Legroom1 + βTotal TT1 · Total TT1

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

V2 = ASC2 + βLogFare · log(Fare2) + βLegroom · Legroom2 + βTotal TT2 · Total TT2

+βSchedDE · SchedDE2 + βSchedDL · SchedDL2

V3 = ASC3 + βLogFare · log(Fare3) + βLegroom · Legroom3 + βTotal TT3 · Total TT3

+βSchedDE · SchedDE3 + βSchedDL · SchedDL3

where the cost is logarithmic.

We now define the composite model MC with the following systematic utilities
(MNL airline composite.py):

V1 = ASC1 + βFare · Fare1 + βLogFare · log(Fare1) + βLegroom · Legroom1 + βTotal TT1 · Total TT1

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

V2 = ASC2 + βFare · Fare2 + βLogFare · log(Fare2) + βLegroom · Legroom2 + βTotal TT2 · Total TT2

+βSchedDE · SchedDE2 + βSchedDL · SchedDL2

V3 = ASC3 + βFare · Fare3 + βLogFare · log(Fare3) + βLegroom · Legroom3 + βTotal TT3 · Total TT3

+βSchedDE · SchedDE3 + βSchedDL · SchedDL3

Table 4 summarizes the differences between the various models and Tables 5, 6 and 7 show the
estimation results for models M1, M2 and MC , respectively.

Now we can apply the likelihood ratio test for M1 against MC . In this case, the null hypothesis
is:

H0 : βLogFare = 0

As usual, −2(L(M1) − L(MC)) is χ2 distributed with K = 1 degrees of freedom. In this case,
we have:
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Models used for the Cox test

Model Parameters Description

M1 9 two ASCs, one generic cost linear coefficient, alter-
native specific time coefficients and three generic
coefficients (for legroom, schedule delay – early de-
parture, schedule delay – late departure)

M2 9 two ASCs, one generic cost logarithmic coefficient,
three alternative specific time coefficients and three
generic coefficients (for legroom, schedule delay –
early departure, schedule delay – late departure)

MC 10 two ASCs, one generic cost linear coefficient, one
generic cost logarithmic coefficient, three alterna-
tive specific time coefficients and three generic co-
efficients (for legroom, schedule delay – early de-
parture, schedule delay – late departure)

Table 4: Summary of the different model specifications

−2(−2320.447 + 2271.656) = 97.582 > 3.84

The result of this first test is that we can reject the null hypothesis H0: it means the composite
model is better than M1. The linear model is rejected. Applying the same test for M2 against
MC , we have

H1 : βFare = 0.

In this case, the likelihood ratio test with K = 1 degrees of freedom gives

−2(−2283.103 + 2271.656) = 22.894 > 3.84

and we can therefore reject the null hypothesis H1 in this case as well. The logaritmic model is
also rejected.

Since both models are rejected, better models should be developed: we cannot keep the com-
posite model with two different cost-related coefficients since it does not have a behavioral
interpretation. If both models had been accepted, we would choose the one with the highest ρ̄2

index.
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Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Constant2 -1.43 0.183 -7.81 0.00
2 Constant3 -1.64 0.192 -8.53 0.00
3 Fare -0.0193 0.000802 -24.05 0.00
4 Legroom 0.226 0.0267 8.45 0.00
5 SchedDE -0.139 0.0163 -8.53 0.00
6 SchedDL -0.104 0.0137 -7.59 0.00
7 Total TT1 -0.332 0.0735 -4.52 0.00
8 Total TT2 -0.299 0.0696 -4.29 0.00
9 Total TT3 -0.302 0.0699 -4.32 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 9

L(β0) = −3964.892

L(β̂) = −2320.447

−2[L(β0)− L(β̂)] = 3288.889
ρ2 = 0.415
ρ̄2 = 0.412

Table 5: Estimation results for the model M1

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Constant2 -1.82 0.194 -9.39 0.00
2 Constant3 -2.09 0.200 -10.46 0.00
3 Legroom 0.219 0.0261 8.38 0.00
4 LogFare -8.54 0.305 -28.02 0.00
5 SchedDE -0.142 0.0167 -8.50 0.00
6 SchedDL -0.105 0.0139 -7.54 0.00
7 Total TT1 -0.465 0.0729 -6.37 0.00
8 Total TT2 -0.335 0.0690 -4.86 0.00
9 Total TT3 -0.321 0.0692 -4.63 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 9

L(β0) = −3964.892

L(β̂) = −2283.103

−2[L(β0)− L(β̂)] = 3363.577
ρ2 = 0.424
ρ̄2 = 0.422

Table 6: Estimation results for the model M2

9



Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Constant2 -1.69 0.193 -8.74 0.00
2 Constant3 -1.94 0.199 -9.73 0.00
3 Fare -0.00658 0.00154 -4.28 0.00
4 Legroom 0.223 0.0265 8.40 0.00
5 LogFare -5.96 0.665 -8.96 0.00
6 SchedDE -0.142 0.0167 -8.51 0.00
7 SchedDL -0.106 0.0140 -7.57 0.00
8 Total TT1 -0.415 0.0739 -5.62 0.00
9 Total TT2 -0.324 0.0694 -4.67 0.00

10 Total TT3 -0.316 0.0697 -4.53 0.00

Summary statistics
Number of observations = 3609
Number of excluded observations = 0
Number of estimated parameters = 10

L(β0) = −3964.892

L(β̂) = −2271.656

−2[L(β0)− L(β̂)] = 3386.472
ρ2 = 0.427
ρ̄2 = 0.425

Table 7: Estimation results for the model MC

3 Market segmentation

Files to use with PythonBiogeme (provided):
Model files: MNL airline specific.py,

MNL airline male.py
MNL airline female.py
MNL airline GenderNA.py

Data file: airline.dat

In this example, we test if there is a taste variation across market segments. The segmentation
is made on the gender variable. We first create three market segments as follows: Male, Female,
and no answer (NA). The sum of observations for each segment is equal to the total observations
(N):

NMale +NFemale +NNA = N

We estimate a model on the full data set. Then we run the same model for each gender group
separately. Note that each time we exclude the observations that do not belong to the considered
segment (using the exclude command from PythonBiogeme). We obtain the values shown in

10



Table 8. The expressions of the utility functions are the same for all models:

V1 = ASC1 + βFare · Fare1 + βLegroom · Legroom1 + βTotal TT1 · Total TT1

+βSchedDE · SchedDE1 + βSchedDL · SchedDL1

V2 = ASC2 + βFare · Fare2 + βLegroom · Legroom2 + βTotal TT2 · Total TT2

+βSchedDE · SchedDE2 + βSchedDL · SchedDL2

V3 = ASC3 + βFare · Fare3 + βLegroom · Legroom3 + βTotal TT3 · Total TT3

+βSchedDE · SchedDE3 + βSchedDL · SchedDL3

Model Log likelihood Number of coefficients

Male -1195.819 9

Female -929.325 9

NA -178.017 9

M1 model -2320.447 9

Table 8: Values for the market segmentation test

The null hypothesis is of no taste variation across the market segments:

H0 : βMale = βFemale = βNA

where βsegment is the vector of coefficients of the market segment. Note that in the above equa-
tion Male, Female and NA refer to market segments and not to variables in the dataset.

The likelihood ratio test (with 27-9=18 degrees of freedom, where 27 corresponds to the 3*9
parameters of the three segment models and 9 to the number of parameters of the general model)
yields:

LR = −2
(
LN (β̂)−

(
LNMale

(β̂Male) + LNFemale)(β̂
Female) + LNNA

(β̂NA)
))

= −2(−2320.447 + 1195.819 + 929.325 + 178.017) = 34.572

χ2
0.95,18 = 28.87

and we can therefore reject the null hypothesis at a 95% level of confidence: market segmentation
on gender does exist.
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