Latent variables

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Outline

- Motivation
- Modeling latent concepts
- Stimation
- Case studies
- Conclusion

Motivation

Rationality?

- Standard random utility assumptions are often violated.
- Factors such as attitudes, perceptions, knowledge are not reflected.

Example: pain lovers

Kahneman, D., Fredrickson, B., Schreiber, C.M., and Redelmeier, D., When More Pain Is Preferred to Less: Adding a Better End, Psychological Science, Vol. 4, No. 6, pp. 401-405, 1993.

- Short trial: immerse one hand in water at 14° for 60 sec.
- Long trial: immerse the other hand at 14° for 60 sec, then keep the hand in the water 30 sec. longer as the temperature of the water is gradually raised to 15° .
- Outcome: most people prefer the long trial.
- Explanation:
 - duration plays a small role
 - the peak and the final moments matter

Example: The Economist

Subscription to The Economist

Web only	@ \$59
Print only	@ \$125
Print and web	@ \$125

Example: The Economist

Subscription to The Economist

Experiment 1	Experiment 2	
Web only @ \$59	Web only @ \$59	
Print only @ \$125		
Print and web @ \$125	Print and web @ \$125	

Example: The Economist

Subscription to The Economist

	Experiment 1	Experiment 2	
16	Web only @ \$59	Web only @ \$59	68
0	Print only @ \$125		
84	Print and web @ \$125	Print and web @ \$125	32

Source: Ariely (2008)

- Dominated alternative
- According to utility maximization, should not affect the choice
- But it affects the perception, which affects the choice.

Example: good or bad wine?

Choose a bottle of wine...

	Experiment 1	Experiment 2
1	McFadden red at \$10	McFadden red at \$10
2	Nappa red at \$12	Nappa red at \$12
3		McFadden special reserve
		pinot noir at \$60
	Most would choose 2	Most would choose 1

Context plays a role on perceptions

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

Experiment 1 # resp. = 152	Experiment 2 # resp. = 155
Treatment A: 200 people saved	Treatment C: 400 people die
Treatment B: 600 people saved with prob. 1/3 0 people saved with prob.	Treatment D: 0 people die with prob. 1/3
2/3	600 people die with prob. 2/3

Example: live and let die

Population of 600 is threatened by a disease. Two alternative treatments to combat the disease have been proposed.

	orman and another mare been proposed.			
	Experiment 1 # resp. = 152	Experiment 2 # resp. = 155		
72%	Treatment A: 200 people saved	Treatment C: 400 people die	22%	
28%	Treatment B: 600 people saved with prob. 1/3	Treatment D: 0 people die with prob. 1/3	78%	
	0 people saved with prob. $2/3$	600 people die with prob. 2/3		

Source: Tversky & Kahneman (1986)

Example: to be free

Choice between a fine and a regular chocolate

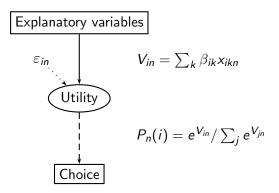
	Experiment 1	Experiment 2
Lindt	\$0.15	\$0.14
Hershey	\$0.01	\$0.00
Lindt chosen	73%	31%
Hershey chosen	27%	69%

Source: Ariely (2008) Predictably irrational, Harper Collins.

Outline

- Motivation
- Modeling latent concepts
- Estimation
- 4 Case studies
- Conclusion

Latent concepts


Latent

- **latent**: potentially existing but not presently evident or realized (from Latin: lateo = lie hidden)
- Here: not directly observed
- Standard models are already based on a latent concept: utility

Drawing convention

- Latent variable
- Observed variable
- structural relation:
- measurement: ____
- errors:

Random utility

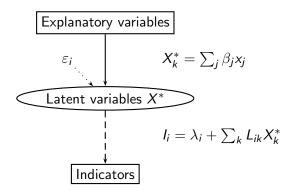
Attitudes

Measuring attitudes

- Psychometric indicators
- Example: attitude towards the environment.
- For each question, response on a scale: strongly agree, agree, neutral, disagree, strongly disagree, no idea.
 - The price of oil should be increased to reduce congestion and pollution
 - More public transportation is necessary, even if it means additional taxes
 - Ecology is a threat to minorities and small companies.
 - People and employment are more important than the environment.
 - I feel concerned by the global warming.
 - Decisions must be taken to reduce the greenhouse gas emission.

Indicators

Model specification

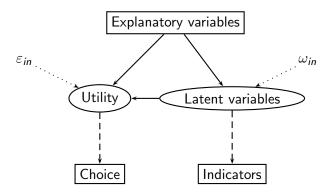

Indicators cannot be used as explanatory variables. Mainly two reasons:

- Measurement errors
 - Scale is arbitrary and discrete
 - People may overreact
 - Justification bias may produce exaggerated responses
- No forecasting possibility
 - No way to predict the indicators in the future

Factor analysis

Measurement equation

Measurement equation


Continuous model: regression

$$I = f(X^*; \beta) + \varepsilon$$

Discrete model: thresholds

$$I = \begin{cases} 1 & \text{if } -\infty < X^* \le \tau_1 \\ 2 & \text{if } \tau_1 < X^* \le \tau_2 \\ 3 & \text{if } \tau_2 < X^* \le \tau_3 \\ 4 & \text{if } \tau_3 < X^* \le \tau_4 \\ 5 & \text{if } \tau_4 < X^* \le +\infty \end{cases}$$

Choice model

Outline

- Motivation
- 2 Modeling latent concepts
- Stimation
- Case studies
- Conclusion

Estimation: likelihood

Structural equations

Distribution of the latent variables:

$$f_1(X_n^*|X_n;\lambda,\Sigma_\omega)$$

For instance

$$X_n^* = h(X_n; \lambda) + \omega_n, \quad \omega_n \sim N(0, \Sigma_\omega).$$

Distribution of the utilities:

$$f_2(U_n|X_n,X_n^*;\beta,\Sigma_{\varepsilon})$$

For instance

$$U_n = V(X_n, X_n^*; \beta) + \varepsilon_n, \quad \varepsilon_n \sim N(0, \Sigma_\omega).$$

Estimation: likelihood

Measurement equations

Distribution of the indicators:

$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim N(0, \Sigma_{\nu}).$$

② Distribution of the observed choice:

$$P(y_{in} = 1) = \Pr(U_{in} \ge U_{in}, \forall j).$$

Indicators: continuous output

$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim N(0, \sigma_{\nu_n}^2)$$

So,

$$f_3(I_n|\cdot) = \frac{1}{\sigma_{\nu_n}\sqrt{2\pi}} \exp\left(-\frac{(I_n - m(\cdot))^2}{2\sigma_{\nu_n}^2}\right)$$

Define

$$Z = \frac{I_n - m(\cdot)}{\sigma_{\nu_n}} \sim N(0, 1), \quad \phi(Z) = \frac{1}{\sqrt{2\pi}} e^{-Z^2/2}$$

and

$$f_3(I_n|\cdot) = \frac{1}{\sigma_{\nu_n}}\phi(Z)$$

Indicators: discrete output

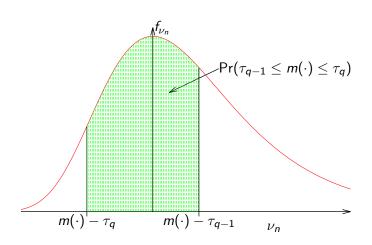
$$f_3(I_n|X_n,X_n^*;\alpha,\Sigma_{\nu})$$

For instance:

 $P(I_n = 1) =$

$$I_n = m(X_n, X_n^*; \alpha) + \nu_n, \quad \nu_n \sim \text{Logistic}(0,1)$$

$$P(I_{n} = 1) = Pr(m(\cdot) \le \tau_{1}) = \frac{1}{1 + e^{-\tau_{1} + m(\cdot)}}$$


$$P(I_{n} = 2) = Pr(m(\cdot) \le \tau_{2}) - Pr(m(\cdot) \le \tau_{1}) = \frac{1}{1 + e^{-\tau_{2} + m(\cdot)}} - \frac{1}{1 + e^{-\tau_{1} + m(\cdot)}}$$

$$\vdots$$

$$P(I_{n} = 5) = 1 - Pr(m(\cdot) \le \tau_{4}) = 1 - \frac{1}{1 + e^{-\tau_{4} + m(\cdot)}}$$

 $P(I_n = 5) =$

Indicators: discrete output

Estimation: likelihood

Assuming ω_n , ε_n and ν_n are independent, we have

$$\mathcal{L}_n(y_n, I_n|X_n; \alpha, \beta, \lambda, \Sigma_{\varepsilon}, \Sigma_{\nu}, \Sigma_{\omega}) =$$

$$\int_{X^*} P(y_n|X_n,X^*;\beta,\Sigma_{\varepsilon}) f_3(I_n|X_n,X^*;\alpha,\Sigma_{\nu}) f_1(X^*|X_n;\lambda,\Sigma_{\omega}) dX^*.$$

Maximum likelihood estimation:

$$\max_{\alpha,\beta,\lambda,\Sigma_{\varepsilon},\Sigma_{\nu},\Sigma_{\omega}} \sum_{n} \log \left(\mathcal{L}_{n}(y_{n},I_{n}|X_{n};\alpha,\beta,\lambda,\Sigma_{\varepsilon},\Sigma_{\nu},\Sigma_{\omega}) \right)$$

Source: Walker (2001)

Outline

- Motivation
- 2 Modeling latent concepts
- 3 Estimation
- Case studies
- Conclusion

Case studies

Walker (2001)

- Mode choice
- Latent variables:
 - Ride comfort
 - Convenience
- Indicators: (from "very poor" to "very good")
 - Relaxation during the trip
 - Reliability of the arrival time
 - Flexibility of choosing departure time
 - Ease of traveling with children
 - Safety during the trip
 - Overall rating of the mode

Case studies

Walker (2001)

- Employees' adoption of telecommuting
- Latent variables:
 - Perceived costs
 - Impact on your expenditures on home utilities
 - Impact on your expenditures on child care
 - Impact on your expenditures on elder care
 - Impact on your expenditures on overall working costs
 - Benefits
 - Impact on your schedule flexibility
 - Impact on your productivity
 - Impact on your autonomy in your job
 - Impact on the productivity of the group you work with
 - Impact on your family life
 - Impact on your social life
 - etc.

Case study: value of time

Effect of attitude on value of time

- SP survey, Stockholm, Sweden, 2005
- 2400 households surveyed
- Married couples with both husband and wife working or studying
- Choice between car alternatives
- Data used: 554 respondents, 2216 SP responses
- Attributes:
 - travel time
 - travel cost
 - number of speed cameras

Attitudinal questions

Statements

- It feels safe to go by car.
- It is comfortable to go by car to work.
- It is very important that traffic speed limits are not violated.
- Increase the motorway speed limit to 140 km/h.

Likert scale

- 1: do not agree at all
- 5: do fully agree

Structural models

Attitude model, capturing the positive attitude towards car

```
 \begin{array}{ll} \mathsf{Attitude} = & \theta_0 \cdot 1 & \mathsf{(intercept)} \\ & + \theta_f \cdot \mathsf{female} \\ & + \theta_{\mathsf{inc}} \cdot \mathsf{income} & \mathsf{(monthly, in Kronas)} \\ & + \theta_{\mathsf{age1}} \cdot (\mathsf{Age} < 55) \\ & + \theta_{\mathsf{age2}} \cdot (\mathsf{Age 55-65)} \\ & + \theta_{\mathsf{age3}} \cdot (\mathsf{Age} > 65) \\ & + \theta_{\mathsf{edu1}} \cdot (\mathsf{basic/pre high school}) \\ & + \theta_{\mathsf{edu2}} \cdot (\mathsf{university}) \\ & + \theta_{\mathsf{edu3}} \cdot (\mathsf{other}) \\ & \sigma \cdot \omega & \mathsf{(normal error term)} \\ \end{array}
```

Structural models

Choice model: 3 alternatives

- Car on route 1
- Car on route 2
- Indifferent (utility = 0)

$$\begin{array}{ll} \text{Utility}_i = & \beta_i & \text{(ASC)} \\ & + \beta_{\mathsf{t}} \cdot \mathsf{travel\ time}_i \\ & + \beta_{\mathsf{c}} \cdot \mathsf{cost}_i \ / \ \mathsf{Income} \\ & + \gamma \cdot \mathsf{cost}_i \cdot \mathsf{Attitude} \ / \ \mathsf{Income} \\ & + \beta_{\mathsf{cam}} \cdot \# \ \mathsf{cameras}_i \\ & + \varepsilon_i & \text{(EV\ error\ term)} \end{array}$$

Note: standard model obtained with $\gamma = 0$.

Value of time

Model without attitude variable ($\gamma=0$)

$$VOT = \frac{\beta_{t}}{\beta_{c}} * Income$$

Model with attitude variable

$$VOT = \frac{\beta_t}{\beta_c + \gamma \cdot Attitude} * Income$$

Note: distributed

Measurement equations

Choice

$$y_i = \left\{ egin{array}{ll} 1 & ext{if } U_i \geq U_j, j
eq i \\ 0 & ext{otherwise} \end{array} \right.$$

Attitude questions: k = 1, ..., 4

$$I_k = \alpha_k + \lambda_k \mathsf{Attitude} + \mu_k$$

where I_k is the response to question k.

Model estimation

- Simultaneous estimation of all parameters
- with Python Biogeme
- Important: both the choice and the indicators reveal something about the attitude.

Measurement equations

• It feels safe to go by car.

$$I_1 = \mathsf{Attitude} + 0.5666 \ \nu_1$$

It is comfortable to go by car to work.

$$I_2 = 1.13 + 0.764$$
 Attitude $+ 0.909 \
u_2$

• It is very important that traffic speed limits are not violated.

$$I_3 = 3.53 - 0.0716 \; \mathsf{Attitude} + 1.25 \; \nu_3$$

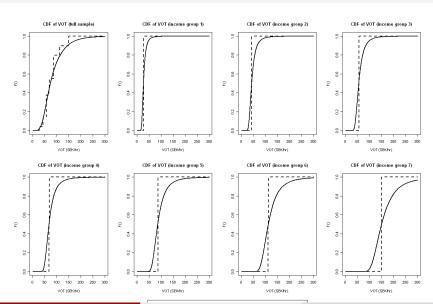
Increase the motorway speed limit to 140 km/h.

$$\mathit{I}_{4} = 1.94 + 0.481$$
 Attitude $+$ 1.37 ν_{4}

Structural model

Attitude towards car

Param.	Estim.	t-stat.
θ_0	5.25	8.99
$ heta_f$	-0.0185	-0.34
$ heta_{inc}$	0.0347	1.99
$ heta_{ extsf{age1}}$	-0.0217	-1.85
$ heta_{\sf age2}$	0.00797	0.88
$\theta_{\sf age3}$	0.0231	2.35
$ heta_{edu1}$	-0.147	-0.94
$ heta_{\sf edu2}$	-0.252	-5.22
$ heta_{\sf edu3}$	-0.157	-0.85
σ	0.934	16.18


Structural model

Utility

Param.	Estim.	t-stat.
β_1	4.01	15.58
eta_2	2.84	10.57
Time	-0.0388	-8.10
Cost/Income	-2.02	-3.63
Cost · Attitude/Income	0.265	2.11
Speed camera	-0.109	-2.75

Value of time

Outline

- Motivation
- 2 Modeling latent concepts
- 3 Estimation
- Case studies
- Conclusion

Conclusion

- Flexible models with more structure
- Translate more assumptions into equations
- More complicated to estimate
- Currently very active field for research and applications.