Mixture Models — Simulation-based Estimation

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

Outline

- Mixtures
- Relaxing the independence assumption
- Relaxing the identical distribution assumption
- Taste heterogeneity
- Latent classes
- Summary

Mixture probability distribution function

Convex combination of other probability distribution functions.

Property

- Let $f(\varepsilon, \theta)$ be a parametrized family of distribution functions
- Let $w(\theta)$ be a non negative function such that

$$\int_{\theta} w(\theta) d\theta = 1$$

Then

$$g(\varepsilon) = \int_{\theta} w(\theta) f(\varepsilon, \theta) d\theta$$

is also a distribution function.

We say that g is a w-mixture of f

- If f is a logit model, g is a continuous w-mixture of logit
- If f is a MEV model, g is a continuous w-mixture of MEV

Discrete mixtures

If w_i , i = 1, ..., n are non negative weights such that

$$\sum_{i=1}^n w_i = 1$$

then

$$g(\varepsilon) = \sum_{i=1}^{n} w_i f(\varepsilon, \theta_i)$$

is also a distribution function where θ_i , i = 1, ..., n are parameters.

We say that g is a discrete w-mixture of f.

Example: discrete mixture of normal distributions

Example: discrete mixture of binary logit models

General motivation

Generate flexible distributional forms

For discrete choice

- correlation across alternatives
- alternative specific variances
- taste heterogeneity

Continuous Mixtures of logit

Combining probit and logit

Error components

$$U_{in} = V_{in} + \xi_{in} + \nu_{in}$$

i.i.d EV (logit): tractability

Normal distribution (probit): flexibility

Logit

Specification of the utility functions

$$\begin{array}{ccccc} U_{\rm auto} & = & \beta X_{\rm auto} & + & \nu_{\rm auto} \\ U_{\rm bus} & = & \beta X_{\rm bus} & + & \nu_{\rm bus} \\ U_{\rm subway} & = & \beta X_{\rm subway} & + & \nu_{\rm subway} \end{array}$$

Distributional assumption

 ν i.i.d. extreme value

Choice model

$$\mathsf{Pr}(\mathsf{auto}|X,\mathcal{C}) = \frac{e^{\beta X_{\mathsf{auto}}}}{e^{\beta X_{\mathsf{auto}}} + e^{\beta X_{\mathsf{bus}}} + e^{\beta X_{\mathsf{subway}}}}$$

Normal mixture of logit

Specification of the utility functions

Distributional assumptions

- \bullet ν i.i.d. extreme value
- $\xi \sim N(0, \Sigma)$

Choice model

$$\begin{split} \Pr(\mathsf{auto}|X,\xi) &= \frac{e^{\beta X_{\mathsf{auto}} + \xi_{\mathsf{auto}}}}{e^{\beta X_{\mathsf{auto}} + \xi_{\mathsf{auto}}} + e^{\beta X_{\mathsf{bus}} + \xi_{\mathsf{bus}}} + e^{\beta X_{\mathsf{subway}} + \xi_{\mathsf{subway}}}} \\ &P(\mathsf{auto}|X) = \int_{\xi} \Pr(\mathsf{auto}|X,\xi) f(\xi) d\xi \end{split}$$

Calculation

Choice model

$$P(\text{auto}|X) = \int_{\xi} \Pr(\text{auto}|X,\xi) f(\xi) d\xi$$

Calculation

- Integral has no closed form.
- If one dimension is involved, numerical integration can be used.
- With more dimensions. Monte Carlo simulation must be used.

Simulation

In order to approximate

$$P(i|X) = \int_{\xi} \Pr(i|X,\xi) f(\xi) d\xi$$

- Draw from $f(\xi)$ to obtain r_1, \ldots, r_R
- Compute

$$P(i|X) \approx \tilde{P}(i|X) = \frac{1}{R} \sum_{k=1}^{R} P(i|X, r_k)$$
$$= \frac{1}{R} \sum_{k=1}^{R} \frac{e^{V_{1n} + r_k}}{e^{V_{1n} + r_k} + e^{V_{2n} + r_k} + e^{V_{3n}}}$$

Simulation

Can approximate as close as needed

$$P(i|X) = \lim_{R \to \infty} \frac{1}{R} \sum_{k=1}^{R} P(i|X, r_k).$$

In practice

- Efficient methods to draw from the distribution.
- R must be large enough.

Outline

- Relaxing the independence assumption
 - Nesting
 - Cross-nesting

Capturing correlations: nesting

Specification of the utility functions

$$\begin{array}{lllll} \textit{U}_{\text{auto}} & = & \beta \textit{X}_{\text{auto}} & + & \nu_{\text{auto}} \\ \textit{U}_{\text{bus}} & = & \beta \textit{X}_{\text{bus}} & + & \sigma_{\text{transit}} \eta_{\text{transit}} & + & \nu_{\text{bus}} \\ \textit{U}_{\text{subway}} & = & \beta \textit{X}_{\text{subway}} & + & \sigma_{\text{transit}} \eta_{\text{transit}} & + & \nu_{\text{subway}} \end{array}$$

Distributional assumptions

- \bullet ν i.i.d. extreme value,
- $\eta_{\text{transit}} \sim N(0,1)$, $\sigma_{\text{transit}}^2 = \text{cov(bus,subway)}$

Choice model

$$\mathsf{Pr}(\mathsf{auto}|X,\eta_{\mathsf{transit}}) = \frac{e^{\beta X_{\mathsf{auto}}}}{e^{\beta X_{\mathsf{auto}}} + e^{\beta X_{\mathsf{bus}} + \sigma_{\mathsf{transit}}\eta_{\mathsf{transit}}} + e^{\beta X_{\mathsf{subway}} + \sigma_{\mathsf{transit}}\eta_{\mathsf{transit}}}$$

$$P(\text{auto}|X) = \int \Pr(\text{auto}|X, \eta) f(\eta) d\eta$$

Nesting structure

Example: residential telephone

	Ct. BM	Ct. SM	Ct. LF	Ct. EF	β_{C}	σ_{M}	σ_{F}
ВМ	1	0	0	0	In(cost(BM))	η_{M}	0
SM	0	1	0	0	In(cost(SM))	η_{M}	0
LF	0	0	1	0	ln(cost(LF))	0	$\eta_{ extsf{ iny F}}$
EF	0	0	0	1	In(cost(EF))	0	η_{F}
MF	0	0	0	0	ln(cost(MF))	0	η_{F}

Nesting structure

Identification issues

- If there are two nests, only one σ is identified
- If there are more than two nests, all σ 's are identified

Walker (2001)

Results with 5000 draws

	NL		NML		NML		NML		NML	
					$\sigma_F = 0$		$\sigma_M = 0$		$\sigma_F = \sigma_M$	
\mathcal{L}	-473.219		-472.768		-473.146		-472.779		-472.846	
	Estim.	Scaled	Estim.	Scaled	Estim.	Scaled	Estim.	Scaled	Estim.	Scaled
Ct .BM	-1.78	1.00	-3.81	1.00	-3.79	1.00	-3.81	1.00	-3.81	1.00
Ct. EF	-0.558	0.313	-1.20	0.314	-1.19	0.313	-1.20	0.314	-1.20	0.314
Ct. LF	-0.512	0.287	-1.10	0.287	-1.09	0.287	-1.09	0.287	-1.09	0.287
Ct. SM	-1.41	0.788	-3.02	0.791	-3.00	0.790	-3.01	0.791	-3.02	0.791
βc	-1.49	0.835	-3.26	0.855	-3.24	0.855	-3.26	0.855	-3.26	0.854
μ_{FLAT}	2.29									
μ_{MEAS}	2.06									
σ_F			3.02		0.00		3.06		2.17	
σ_{M}			0.530		3.02		0.00		2.17	
$\sigma_F^2 + \sigma_M^2$			9.40		9.15		9.37		9.43	

Comments

- The scale of the parameters is different between NL and the mixture model
- Normalization can be performed in several ways
 - $\sigma_F = 0$
 - $\sigma_M = 0$
 - $\sigma_F = \sigma_M$
- Final log likelihood should be the same
- But... estimation relies on simulation.
- Only an approximation of the log likelihood is available
- Final log likelihood with 50000 draws:

Unnormalized: -472.872 $\sigma_M = \sigma_F$: -472.875

 $\sigma_F = 0$: -472.884 $\sigma_M = 0$: -472.901

Cross nesting

Cross nesting

Specification

Choice model

$$P(\mathsf{car}) = \int_{\xi_1} \int_{\xi_2} P(\mathsf{car}|\xi_1, \xi_2) f(\xi_1) f(\xi_2) d\xi_2 d\xi_1$$

Identification issue

- Not all parameters can be identified
- For logit, one ASC has to be constrained to zero
- Identification of NML is important and tricky
- See Walker, Ben-Akiva & Bolduc (2007) for a detailed analysis

Outline

- Relaxing the identical distribution assumption
 - Normalization

Alternative specific variance

Logit: i.i.d. error terms

In particular, they have the same variance

$$U_{in} = \beta^T x_{in} + \mathsf{ASC}_i + \varepsilon_{in}$$

• ε_{in} i.i.d. $EV(0,\mu) \Rightarrow Var(\varepsilon_{in}) = \pi^2/6\mu^2$

Relax the identical distribution assumption

$$U_{in} = \beta^T x_{in} + \mathsf{ASC}_i + \sigma_i \xi_i + \varepsilon_{in}$$

where $\xi_i \sim N(0,1)$

Variance

$$Var(\sigma_i \xi_i + \varepsilon_{in}) = \sigma_i^2 + \frac{\pi^2}{6\mu^2}$$

Alternative specific variance

Identification issue

- Not all σs are identified
- One of them must be constrained to zero.
- Not necessarily the one associated with the ASC constrained to zero
- In theory, the smallest σ must be constrained to zero
- In practice, we don't know a priori which one it is
- Solution:
 - **1** Estimate a model with a full set of σ s
 - Identify the smallest one and constrain it to zero.

Alternative specific variance

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	B_COST	B_FR	B_TIME
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

+ alternative specific variance

Comparison (using 500 draws)

	Logit		AS	SV	ASV norm.		
\mathcal{L}	-5315.39		-5240).414	-5240.414		
	Estim.	Scaled	Estim.	Scaled	Estim.	Scaled	
ASC_CAR	0.189	-0.175	0.248	-0.140	0.248	-0.140	
ASC_SM	0.451	-0.418	0.900	-0.508	0.901	-0.509	
B_COST	-1.08	1.00	-1.77	1.00	-1.77	1.00	
B₋FR	-5.35	4.95	-7.78	4.40	-7.78	4.40	
$B_{-}TIME$	-1.28	1.19	-1.71	0.966	-1.71	0.966	
SIGMA_CAR			0.0107				
SIGMA_TRAIN			0.0284		0.0282		
SIGMA_SM	IA_SM		-3.21		-3.22		

Identification issue: process

Examine the variance-covariance matrix

- Specify the model of interest
- Take the differences in utilities
- Apply the order condition: necessary condition
- Apply the rank condition: sufficient condition
- Apply the equality condition: verify equivalence

Heteroscedastic: specification

Model

$$\begin{array}{rclcrcl} U_1 & = & \beta x_1 & +\sigma_1 \xi_1 & & & +\varepsilon_1 \\ U_2 & = & \beta x_2 & & +\sigma_2 \xi_2 & & +\varepsilon_2 \\ U_3 & = & \beta x_3 & & +\sigma_3 \xi_3 & & +\varepsilon_3 \\ U_4 & = & \beta x_4 & & & +\sigma_4 \xi_4 & +\varepsilon_4 \end{array}$$

where $\xi_i \sim N(0,1)$, $\varepsilon_i \sim EV(0,\mu)$

Covariance matrix

$$\mathsf{Cov}(\textit{U}) = \left(\begin{array}{cccc} \sigma_1^2 + \gamma/\mu^2 & 0 & 0 & 0 \\ 0 & \sigma_2^2 + \gamma/\mu^2 & 0 & 0 \\ 0 & 0 & \sigma_3^2 + \gamma/\mu^2 & 0 \\ 0 & 0 & 0 & \sigma_4^2 + \gamma/\mu^2 \end{array} \right)$$

Heteroscedastic: differences

Utility differences

$$U_{1} - U_{4} = \beta(x_{1} - x_{4}) + (\sigma_{1}\xi_{1} - \sigma_{4}\xi_{4}) + (\varepsilon_{1} - \varepsilon_{4})$$

$$U_{2} - U_{4} = \beta(x_{2} - x_{4}) + (\sigma_{2}\xi_{2} - \sigma_{4}\xi_{4}) + (\varepsilon_{2} - \varepsilon_{4})$$

$$U_{3} - U_{4} = \beta(x_{3} - x_{4}) + (\sigma_{3}\xi_{3} - \sigma_{4}\xi_{4}) + (\varepsilon_{3} - \varepsilon_{4})$$

Covariance of utility differences

$$Cov(\Delta U) =$$

$$\begin{pmatrix} \sigma_1^2 + \sigma_4^2 + 2\gamma/\mu^2 & \sigma_4^2 + \gamma/\mu^2 & \sigma_4^2 + \gamma/\mu^2 \\ \sigma_4^2 + \gamma/\mu^2 & \sigma_2^2 + \sigma_4^2 + 2\gamma/\mu^2 & \sigma_4^2 + \gamma/\mu^2 \\ \sigma_4^2 + \gamma/\mu^2 & \sigma_4^2 + \gamma/\mu^2 & \sigma_3^2 + \sigma_4^2 + 2\gamma/\mu^2 \end{pmatrix}$$

Heteroscedastic: order condition

Upper bound

- S is the number of estimable parameters
- I is the number of alternatives

$$S \leq \frac{J(J-1)}{2} - 1$$

- It represents the number of entries in the lower part of the (symmetric) var-cov matrix
- minus 1 for the scale
- J = 4 implies $S \le 5$

Heteroscedastic: rank condition

Idea

- Number of estimable parameters =
- number of linearly independent equations
- -1 for the scale

$$\begin{array}{c} \mathsf{Cov}(\Delta \textit{U}) = \\ & \begin{pmatrix} \sigma_{1}^{2} + \sigma_{4}^{2} + 2\gamma/\mu^{2} & \\ \sigma_{4}^{2} + \gamma/\mu^{2} & \sigma_{2}^{2} + \sigma_{4}^{2} + 2\gamma/\mu^{2} \\ \sigma_{4}^{2} + \gamma/\mu^{2} & \sigma_{4}^{2} + \gamma/\mu^{2} \end{pmatrix} \\ & \mathsf{dependent} \\ & \mathsf{scale} \end{array}$$

Heteroscedastic: rank condition

Three parameters out of five can be estimated

Formally...

- 1 Identify unique elements of $Cov(\Delta U)$
- ② Compute the Jacobian wrt σ_1^2 , σ_2^2 , σ_3^2 , σ_4^2 , γ/μ^2
- Compute the rank

$$\begin{pmatrix} \sigma_1^2 + \sigma_4^2 + 2\gamma/\mu^2 \\ \sigma_2^2 + \sigma_4^2 + 2\gamma/\mu^2 \\ \sigma_3^2 + \sigma_4^2 + 2\gamma/\mu^2 \\ \sigma_4^2 + \gamma/\mu^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 & 2 \\ 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

$$S = Rank - 1 = 3$$

Heteroscedastic: equality condition

Normalization

- We know how many parameters can be identified
- There are infinitely many normalizations
- The normalized model is equivalent to the original one
- Obvious normalizations, like constraining extra-parameters to 0 or another constant, may not be valid

Heteroscedastic: equality condition

Error components

$$\begin{array}{rclcrcl} U_n & = & \beta^T x_n & + & L_n \xi_n & + & \varepsilon_n \\ \operatorname{Cov}(U_n) & = & & L_n L_n^T & + & (\gamma/\mu^2) I \\ \operatorname{Cov}(\Delta_j U_n) & = & & \Delta_j L_n L_n^T \Delta_j^T & + & (\gamma/\mu^2) \Delta_j \Delta_j^T \end{array}$$

Notations

$$\Delta_2 = \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$
 $\mathsf{Cov}(\Delta_j U_n) = \begin{array}{ccc} \Omega_n & = & \Sigma_n & + & \Gamma_n \\ \Omega_n^\mathsf{norm} & = & \Sigma_n^\mathsf{norm} & + & \Gamma_n^\mathsf{norm} \end{array}$

4□ > 4□ > 4□ > 4□ > 4□ = 900

The following conditions must hold

Covariance matrices must be equal

$$\Omega_n = \Omega_n^{\mathsf{norm}}$$

• Σ_n^{norm} must be positive semi-definite

Example with 3 alternatives

$$U_{1} = \beta x_{1} + \sigma_{1} \xi_{1} + \varepsilon_{1}$$

$$U_{2} = \beta x_{2} + \sigma_{2} \xi_{2} + \varepsilon_{2}$$

$$U_{3} = \beta x_{3} + \sigma_{3} \xi_{3} + \varepsilon_{3}$$

$$Cov(\Delta_{3} U) = \Omega = \begin{pmatrix} \sigma_{1}^{2} + \sigma_{3}^{2} + 2\gamma/\mu^{2} \\ \sigma_{3}^{2} + \gamma/\mu^{2} & \sigma_{2}^{2} + \sigma_{3}^{2} + 2\gamma/\mu^{2} \end{pmatrix}$$

- Parameters: $\{\sigma_1, \sigma_2, \sigma_3, \mu\}$
- Rank condition: S=2
- \bullet μ is used for the scale

Change of variables

- Denote $\nu_i = \sigma_i^2 \mu^2$ (scaled parameters)
- Normalization condition: $\nu_3 = K$

$$\begin{split} \Omega &= \left(\begin{array}{cc} (\nu_1 + \nu_3 + 2\gamma)/\mu^2 \\ (\nu_3 + \gamma)/\mu^2 & (\nu_2 + \nu_3 + 2\gamma)/\mu^2 \end{array} \right) \\ \Omega^{\text{norm}} &= \left(\begin{array}{cc} (\nu_1^N + K + 2\gamma)/\mu_N^2 \\ (K + \gamma)/\mu_N^2 & (\nu_2^N + K + 2\gamma)/\mu_N^2 \end{array} \right) \end{split}$$

where index N stands for "normalized"

First equality condition: $\Omega = \Omega^{\text{norm}}$

$$\begin{array}{rcl} (\nu_3+\gamma)/\mu^2 & = & (K+\gamma)/\mu_N^2 \\ (\nu_1+\nu_3+2\gamma)/\mu^2 & = & (\nu_1^N+K+2\gamma)/\mu_N^2 \\ (\nu_2+\nu_3+2\gamma)/\mu^2 & = & (\nu_2^N+K+2\gamma)/\mu_N^2 \end{array}$$

that is, writing the normalized parameters as functions of others,

$$\begin{array}{rcl} \mu_{N}^{2} & = & \mu^{2}(K+\gamma)/(\nu_{3}+\gamma) \\ \nu_{1}^{N} & = & (K+\gamma)(\nu_{1}+\nu_{3}+2\gamma)/(\nu_{3}+\gamma)-K-2\gamma \\ \nu_{2}^{N} & = & (K+\gamma)(\nu_{2}+\nu_{3}+2\gamma)/(\nu_{3}+\gamma)-K-2\gamma \end{array}$$

40 / 80

Second equality condition

$$\Sigma^{\mathsf{norm}} = rac{1}{\mu_N^2} \left(egin{array}{ccc}
u_1^N & 0 & 0 \\
0 &
u_2^N & 0 \\
0 & 0 & K
\end{array}
ight)$$

must be positive semi-definite, that is

$$\mu_N > 0, \ \nu_1^N \ge 0, \ \nu_2^N \ge 0, \ K \ge 0.$$

Putting everything together, we obtain

$$K \geq \frac{(\nu_3 - \nu_i)\gamma}{\nu_i + \gamma}, i = 1, 2$$

Condition to be verified for the normalization to be valid

$$K \geq \frac{(\nu_3 - \nu_i)\gamma}{\nu_i + \gamma}, i = 1, 2$$

- If $\nu_3 \le \nu_i$, i = 1, 2, then the rhs is negative, and any $K \ge 0$ would do. Typically, K=0.
- If not, K must be chosen large enough
- In practice, always select the alternative with minimum variance.

Outline

- Taste heterogeneity

Taste heterogeneity

Motivation

- Population is heterogeneous
- Taste heterogeneity is captured by segmentation
- Deterministic segmentation is desirable but not always possible
- Distribution of a parameter in the population

$$U_i = \beta_t T_i + \beta_c C_i + \varepsilon_i$$

$$U_j = \beta_t T_j + \beta_c C_j + \varepsilon_j$$

Let $\beta_t \sim N(\bar{\beta}_t, \sigma_t^2)$, or, equivalently,

$$\beta_t = \bar{\beta}_t + \sigma_t \xi$$
, with $\xi \sim N(0, 1)$.

$$U_{i} = \bar{\beta}_{t} T_{i} + \sigma_{t} \xi T_{i} + \beta_{c} C_{i} + \varepsilon_{i}$$

$$U_{j} = \bar{\beta}_{t} T_{j} + \sigma_{t} \xi T_{j} + \beta_{c} C_{j} + \varepsilon_{j}$$

If ε_i and ε_j are i.i.d. EV and ξ is given, we have

$$P(i|\xi) = \frac{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i}}{e^{\bar{\beta}_t T_i + \sigma_t \xi T_i + \beta_c C_i} + e^{\bar{\beta}_t T_j + \sigma_t \xi T_j + \beta_c C_j}}, \text{ and}$$

$$P(i) = \int_{\xi} P(i|\xi)f(\xi)d\xi.$$

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, normal distribution

Estimation results

Logit	RC
-5315.4	-5198.0
0.189	0.118
0.451	0.107
-0.011	-0.013
-0.005	-0.006
-0.013	-0.023
	0.017
	8.8%
	234.84
	0.189 0.451 -0.011 -0.005

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	$B_{-}FR$	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, log normal distribution

```
[Utilities]
11 SBB_SP TRAIN_AV_SP ASC_SBB_SP * one
                     B_COST * TRAIN_COST +
                     B_FR * TRAIN_FR
21 SM_SP SM_AV
                     ASC\_SM\_SP * one
                     B COST * SM COST
                     B FR * SM FR
31 Car SP CAR AV SP
                    ASC\_CAR\_SP * one
                     B COST * CAR CO
[GeneralizedUtilities]
11 - exp( B_TIME [ S_TIME ] ) * TRAIN_TT
21 - \exp(B_TIME [S_TIME]) * SM_TT
31 - exp( B_TIME [ S_TIME ] ) * CAR_TT
```

Estimation results

	Logit	RC-norm.	RC-logn.	
	-5315.4	-5198.0	-5215.81	
ASC_CAR_SP	0.189	0.118	0.122	
ASC_SM_SP	0.451	0.107	0.069	
$B_{-}COST$	-0.011	-0.013	-0.014	
B_FR	-0.005	-0.006	-0.006	
$B_{-}TIME$	-0.013	-0.023	-4.033	-0.038
$S_{-}TIME$		0.017	1.242	0.073
$Prob(\beta > 0)$		8.8%	0.0%	
χ^2		234.84	199.16	

Example with Swissmetro

	ASC_CAR	ASC_SBB	ASC_SM	$B_{-}COST$	B_FR	$B_{-}TIME$
Car	1	0	0	cost	0	time
Train	0	0	0	cost	freq.	time
Swissmetro	0	0	1	cost	freq.	time

B_TIME randomly distributed across the population, discrete distribution

$$P(\beta_{\mathsf{time}} = \hat{\beta}) = \omega_1 \quad P(\beta_{\mathsf{time}} = 0) = \omega_2 = 1 - \omega_1$$


```
Syntax for Biogeme
[DiscreteDistributions]
B_{TIME} < B_{TIME_1} (W1) B_{TIME_2} (W2) >
[LinearConstraints]
W1 + W2 = 1.0
```

Estimation results

	Logit	RC-norm.	RC-logn.		RC-disc.
	-5315.4	-5198.0	-5215.8		-5191.1
ASC_CAR_SP	0.189	0.118	0.122		0.111
ASC_SM_SP	0.451	0.107	0.069		0.108
$B_{-}COST$	-0.011	-0.013	-0.014		-0.013
B_FR	-0.005	-0.006	-0.006		-0.006
$B_{-}TIME$	-0.013	-0.023	-4.033	-0.038	-0.028
					0.000
$S_{-}TIME$		0.017	1.242	0.073	
W1					0.749
W2					0.251
$Prob(\beta > 0)$		8.8%	0.0%		0.0%
χ^2		234.84	199.16		248.6

Outline

- Latent classes

Latent classes

Capture unobserved heterogeneity

They can represent different:

- Choice sets
- Decision protocols
- Tastes
- Model structures
- etc.

Latent classes

Model structure

$$P_n(i|\mathcal{C}_n) = \sum_{s=1}^{S} P_n(i|\mathcal{C}_n, s) Q_n(s)$$

- $P_n(i|\mathcal{C}_n,s)$ is the class-specific choice model
 - probability of choosing i given that the individual n belongs to class s
- $Q_n(s)$ is the class membership model
 - probability of belonging to class s

Outline

- 6 Summary

Summary

Logit mixtures models

- Computationally more complex than MEV
- Allow for more flexibility than MEV

Continuous mixtures

Alternative specific variance, nesting structures, random parameters

$$P_n(i) = \int_{\xi} P_n(i|\xi) f(\xi) d\xi$$

Discrete mixtures

Latent classes of decision makers

$$P_n(i|\mathcal{C}_n) = \sum_{s=1}^{S} P_n(i|\mathcal{C}_n, s) Q_n(s)$$

Tips for applications

- Be careful: simulation can mask specification and identification issues
- Do not forget about the systematic portion

How to calculate?

$$P(i) = \int_{\xi} \Pr(i|\xi) f(\xi) d\xi$$

No closed form formula

Monte Carlo simulation

- Randomly draw numbers such that their frequency matches the density $f(\xi)$
- Let ξ^1, \dots, ξ^R be these numbers
- The choice model can be approximated by

$$P(i) pprox rac{1}{R} \sum_{r=1}^{R} \Pr(i|r)$$
, as $\lim_{R o \infty} rac{1}{R} \sum_{r=1}^{R} \Pr(i|r) = \int_{\xi} \Pr(i|\xi) f(\xi) d\xi$

Approximation

$$P(i) pprox rac{1}{R} \sum_{r=1}^{R} \Pr(i|r).$$

The kernel is a logit model, easy to compute

$$\Pr(i|r) = \frac{e^{V_{1n} + r}}{e^{V_{1n} + r} + e^{V_{2n} + r} + e^{V_{3n}}}$$

Therefore, it amounts to generating the appropriate draws.

Pseudo-random numbers generators

Although deterministically generated, numbers exhibit the properties of random draws

- Uniform distribution
- Standard normal distribution
- Transformation of standard normal
- Inverse CDF
- Multivariate normal

Uniform distribution

- Almost all programming languages provide generators for a uniform U(0,1)
- If r is a draw from a U(0,1), then

$$s = (b - a)r + a$$

is a draw from a U(a, b)

Standard normal

• If r_1 and r_2 are independent draws from U(0,1), then

$$s_1 = \sqrt{-2 \ln r_1} \sin(2\pi r_2)$$

$$s_2 = \sqrt{-2 \ln r_1} \cos(2\pi r_2)$$

are independent draws from N(0,1)

Histogram of 100 random samples from a univariate Gaussian PDF with unit variance and zero mean

Histogram of 500 random samples from a univariate Gaussian PDF with unit variance and zero mean

Histogram of 10000 random samples from a univariate Gaussian PDF with unit variance and zero mean

Normal distribution

If r is a draw from N(0,1), then

$$s = br + a$$

is a draw from $N(a, b^2)$

Log normal distribution

If r is a draw from $N(a, b^2)$, then

 e^{r}

is a draw from a log normal $LN(a, b^2)$ with mean $e^{a+(b^2/2)}$ and variance $e^{2a+b^2}(e^{b^2}-1)$

Inverse CDF

- Consider a univariate r.v. with CDF $F(\varepsilon)$
- If F is invertible and if r is a draw from U(0,1), then

$$s = F^{-1}(r)$$

is a draw from the given r.v.

Example: EV with

$$F(\varepsilon) = e^{-e^{-\varepsilon}}$$
 $F^{-1}(r) = -\ln(-\ln r)$

Appendix: Simulation: inverse CDF

Multivariate normal

If r_1, \ldots, r_n are independent draws from N(0,1), and

$$r = \left(\begin{array}{c} r_1 \\ \vdots \\ r_n \end{array}\right)$$

then

$$s = a + Lr$$

is a vector of draws from the *n*-variate normal $N(a, LL^T)$, where

- L is lower triangular, and
- LL^T is the Cholesky factorization of the variance-covariance matrix

Example

$$L = \left(\begin{array}{ccc} \ell_{11} & 0 & 0\\ \ell_{21} & \ell_{22} & 0\\ \ell_{31} & \ell_{32} & \ell_{33} \end{array}\right)$$

$$\begin{array}{rclcrcl} s_1 & = & \ell_{11}r_1 \\ s_2 & = & \ell_{21}r_1 & + & \ell_{22}r_2 \\ s_3 & = & \ell_{31}r_1 & + & \ell_{32}r_2 & + & \ell_{33}r_3 \end{array}$$

Mixtures of logit

$$P(i|X) = \int_{\xi} \Pr(i|X,\xi) f(\xi) d\xi$$

- Draw from $f(\xi)$ to obtain r_1, \ldots, r_R
- Compute

$$P(i|X) \approx \tilde{P}(i|X) = \frac{1}{R} \sum_{k=1}^{R} P(i|X, r_k)$$

= $\frac{1}{R} \sum_{k=1}^{R} \frac{e^{V_{1n} + r_k}}{e^{V_{1n} + r_k} + e^{V_{2n} + r_k} + e^{V_{3n}}}$

Appendix: Maximum simulated likelihood

Solve

$$\max_{\theta} \mathcal{L}(\theta) = \sum_{n=1}^{N} \left(\sum_{j=1}^{J} y_{jn} \ln \tilde{P}(j; \theta) \right)$$

where $y_{in} = 1$ if ind. n has chosen alt. j, 0 otherwise.

Vector of parameters θ contains

- usual (fixed) parameters of the choice model
- parameters of the density of the random parameters
- For instance, if $\beta_j \sim N(\mu_j, \sigma_i^2)$, μ_j and σ_j are parameters to be estimated

Appendix: Maximum simulated likelihood

Warning

• $\tilde{P}(j;\theta)$ is an unbiased estimator of $P(j;\theta)$

$$E[\tilde{P}_n(j;\theta)] = P(j;\theta)$$

• In $\tilde{P}(j;\theta)$ is **not** an unbiased estimator of In $P(j;\theta)$

$$\ln E[\tilde{P}(j;\theta)] \neq E[\ln \tilde{P}(j;\theta)]$$

• Under some conditions, it is a consistent (asymptotically unbiased) estimator, so that many draws are necessary.

Appendix: Maximum simulated likelihood

Properties of MSL

- If R is fixed, MSL is inconsistent
- If R rises at any rate with N, MSL is consistent
- If R rises faster than \sqrt{N} , MSL is asymptotically equivalent to ML.