Mathematical Modeling of Behavior

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

Outline

(1) Motivation

- In this course
- Applications
- Importance
(2) Simple example
- Choice problem
- Data
- Model specification
- Probabilities
- Model
- Estimation
- Testing
- Maximum likelihood
- Hypothesis testing
- Application

Motivation

Human dimension in

- engineering
- business
- marketing
- planning
- policy making

Need for

- behavioral theories
- quantitative methods
- operational mathematical models

Motivation

Concept of demand

- marketing
- transportation
- energy
- finance

Concept of choice

- brand, product
- mode, destination
- type, usage
- buy/sell, product

In this course...

Focus

- Individual behavior (vs. aggregate behavior)
- Theory of behavior which is
- descriptive (how people behave) and not normative (how they should behave)
- general: not too specific
- operational: can be used in practice for forecasting
- Type of behavior: choice

Applications

Mode choice in the Netherlands

- Context: car vs rail in Nijmegen
- Objective: sensitivity to travel time and cost, inertia.

Mode choice in Switzerland

- Context: Car Postal
- Objective: demand forecasting

Applications

Swissmetro

- Context: new transportation technology
- Objective: demand pattern, pricing

Residential telephone services

- Context: flat rate vs. measured
- Objective: offer the most appropriate service

Airline itinerary choice

- Context: questionnaire about itineraries across the US
- Objective: help airlines and aircraft manufacturer to design a better offer

Importance

Daniel L. McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

Outline

(1) Motivation

- In this course
- Applications
- Importance
(2) Simple example
- Choice problem
- Data
- Model specification
- Probabilities
- Model
- Estimation
- Testing
- Maximum likelihood
- Hypothesis testing
- Application

Simple example

Objectives
Introduce basic components of choice modeling:

- definition of the problem
- data
- model specification
- parameter estimation
- model application

Application
Analysis of the market for smartphones

Choice problem

Choice
Consumer's choice to

- own a smartphone
- own another ("non-smart") mobile phone.

Questions

- what is the current market penetration of smartphones relative to non-smart phones?
- how will the penetration change in the future?

Data

Population

- adults
- in the US
- owning a mobile phone

Sample

- 2000 adults
- randomly selected

Questions

Is your mobile phone a smartphone

- Yes,
- No.

What is your level of educational attainment?

- No high school diploma,
- High school graduate,
- College graduate.

Data

Contingency table

	Education			
Smartphone	Low $(k=1)$	Medium $(k=2)$	High $(k=3)$	
Yes $(i=1)$	75	500	510	1085
No $(i=2)$	175	500	240	915
	250	1000	750	2000

Market penetration in the sample

- 1085/2000 = 54.3\%
- How do we predict? We need a model.

Model specification

Variables

Dependent

- or endogenous
- what is explained
- here: choice to use a smartphone
- notation: i
- nature: discrete
- 1 = "yes"; 2= "no"

Independent

- or exogenous
- explanatory
- here: level of education
- notation: k
- nature: discrete
- 1 = "low"; 2= "medium"; $3=$ "high"

Probabilities

Marginal probability

- frequency of smartphone ownership in the population
- $P(i=1)$
- Inference: use the sample to obtain an estimate
- $P(i=1) \approx \widehat{P}(i=1)=1085 / 2000=0.543$

Joint probability

- frequency of smartphone ownership and medium level of education
- $P(i=1, k=2) \approx \widehat{P}(i=1, k=2)=500 / 2000=0.25$

Conditional probability

- frequency of smartphone ownership in the population of people with medium level of education
- $P(i=1 \mid k=2) \approx \widehat{P}(i=1 \mid k=2)=500 / 1000=0.50$

Model

$$
\begin{aligned}
P(i, k) & =P(i \mid k) P(k) \\
& =P(k \mid i) P(i)
\end{aligned}
$$

Interpretation

- $P(i \mid k)$: level of education explains smartphone ownership
- $P(k \mid i)$: smartphone ownership explains level of education

Model

- identify stable causal relationships between the variable
- here: we select $P(i \mid k)$ as an acceptable behavioral model
- stability over time necessary to forecast

Model

Specification

$$
\begin{aligned}
P(i=1 \mid k=1) & =\pi_{1}, \\
P(i=1 \mid k=2) & =\pi_{2}, \\
P(i=1 \mid k=3) & =\pi_{3} .
\end{aligned}
$$

Parameters

- $\pi_{1}, \pi_{2}, \pi_{3}$
- unknown
- must be estimated from data

Model estimation

$$
\pi_{j}=P(i=1 \mid k=j) \approx \widehat{\pi}_{j}=\widehat{P}(i=1 \mid k=j)=\frac{\widehat{P}(i=1, k=j)}{\widehat{P}(k=j)}
$$

Using the contingency table:

$$
\begin{aligned}
& \widehat{\pi}_{1}=75 / 250=0.300 \\
& \widehat{\pi}_{2}=500 / 1000=0.500 \\
& \widehat{\pi}_{3}=510 / 750=0.680
\end{aligned}
$$

Quality of the estimates

Informal checks

- Do these estimates make sense?
- Do they match our a priori expectations?
- Here: as years of education increases, there is a higher penetration of smartphones.

Quality of the estimates

- How is $\widehat{\pi}_{j}$ different from π_{j} ?
- We have no access to π_{j}
- For each sample, we would obtain a different value of $\widehat{\pi}_{j}$
- $\widehat{\pi}_{j}$ is distributed.

Quality of the estimates

Distribution of π_{2}

Quality of the estimates

Distribution of π_{2}

- Smaller samples are associated with wider spread
- The larger the sample, the better the estimate
- In practice, impossible to repeat the sampling multiple times
- Distributions derived from theoretical results or simulation

Properties

- Bernoulli (0/1) random variables
- Variance: $\sigma_{j}^{2}=\pi_{j}\left(1-\pi_{j}\right)$
- Sample average: unbiased estimator
- Standard error of the estimator: $\sqrt{\sigma^{2} / N}$
- Estimated standard error:

$$
\widehat{s}_{\pi_{j}}=\sqrt{\widehat{\pi}_{j}\left(1-\widehat{\pi}_{j}\right) / N_{j}}
$$

Testing

Estimates and standard errors

parameter	$\widehat{\pi}_{j}$	$\widehat{s}_{\pi_{j}}$
π_{1}	0.300	0.029
π_{2}	0.500	0.016
π_{3}	0.680	0.017

Maximum likelihood estimation

Likelihood function

$$
\mathcal{L}^{*}=\prod_{n=1}^{N} P\left(i_{n} \mid k_{n}\right)
$$

- Probability that our model reproduces exactly the observations
- For our example:

$$
\mathcal{L}^{*}=\left(\pi_{1}\right)^{75}\left(1-\pi_{1}\right)^{175}\left(\pi_{2}\right)^{500}\left(1-\pi_{2}\right)^{500}\left(\pi_{3}\right)^{510}\left(1-\pi_{3}\right)^{240}
$$

Maximum likelihood estimation

Estimates

- Values of the parameters that maximize \mathcal{L}^{*}.
- In practice, the logarithm is maximized

$$
\mathcal{L}=\ln \mathcal{L}^{*}=\sum_{n=1}^{N} \ln P\left(i_{n} \mid k_{n}\right)
$$

Properties

- Consistency
- Asymptotic efficiency

Maximum likelihood

Hypothesis testing

Null hypothesis

- Default hypothesis
- Is accepted except if the data tells otherwise
- Example: education has no effect on smartphone ownership
- Under the null hypothesis, we have a restricted model

$$
\pi=\pi_{1}=\pi_{2}=\pi_{3}
$$

- We compare the unrestricted and the restricted model

Hypothesis testing

Unrestricted model

- Log likelihood function:

$$
\begin{aligned}
\mathcal{L}=75 \ln \left(\pi_{1}\right)+175 \ln \left(1-\pi_{1}\right) & +500 \ln \left(\pi_{2}\right)+500 \ln \left(1-\pi_{2}\right) \\
& +510 \ln \left(\pi_{3}\right)+240 \ln \left(1-\pi_{3}\right)
\end{aligned}
$$

- Estimates: $\widehat{\pi}_{1}=0.300, \widehat{\pi}_{2}=0.500, \widehat{\pi}_{3}=0.680$.
- Maximum likelihood: -1316.0

Restricted model

- Log likelihood function:

$$
\mathcal{L}=1085 \ln (\pi)+915 \ln (1-\pi) .
$$

- Estimate: $\widehat{\pi}=0.543$
- Maximum likelihood: - 1379.1

Hypothesis testing

Property

- If the null hypothesis is true
- the statistic

$$
-2\left(\mathcal{L}^{R}-\mathcal{L}^{U}\right)=-2(-1379.0+1316.0)=126.1
$$

- is asymptotically distributed as χ^{2} with degrees of freedom equal to the number of restrictions (2 here).

Applying the test

- the critical value of the χ^{2} distribution with 2 degrees of freedom at 99% significance is $9.210<126.1$.
- The null hypothesis is rejected with at least 99\% confidence.
- Education does influence smartphone ownership.

Model application

Present scenario

- Level of education: low (12.5\%), medium (50\%), high (37.5\%)
- Penetration rate:

$$
0.300 \times 12.5 \%+0.500 \times 50 \%+0.680 \times 37.5 \%=54.3 \%
$$

Future scenario

- Level of education will change in the future
- Level of education: low (10\%), medium (40\%), high (50\%)
- Penetration rate: $0.300 \times 10 \%+0.500 \times 40 \%+0.680 \times 50 \%=57 \%$

Note

- Causal relationship does not vary over time
- Values of the explanatory variables evolve over time

Outline

(1) Motivation

- In this course
- Applications
- Importance
(2) Simple example
- Choice problem
- Data
- Model specification
- Probabilities
- Model
- Estimation
- Testing
- Maximum likelihood
- Hypothesis testing
- Application

