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Abstract

Discrete choice methods mode a decision-maker’ s choice among a set of mutually exclusive and
collectively exhaudtive dternatives. They are used in a variety of disciplines (trangportation, economics,
psychology, public policy, etc.) in order to inform policy and marketing decisions and to better understand
and test hypotheses of behavior. This dissertation is concerned with the enhancement of discrete choice
methods.

The workhorses of discrete choice are the multinomia and nested logit models. These models rely on
simplistic assumptions, and there has been much debate regarding their validity. Behaviora researchers
have emphasized the importance of amorphous influences on behavior such as context, knowledge, and
attitudes. Cognitive scientists have uncovered anomalies that appear to violate the microeconomic
underpinnings that are the basis of discrete choice analysis. To address these criticisms, researchers have
for some time been working on enhancing discrete choice models. While there have been numerous
advances, typically these extensions are examined and applied in isolation. In this dissertation, we present,
empirically demonstrate, and test a generalized methodological framework that integrates the extensions of
discrete choice.

The basic technique for integrating the methods is to start with the multinomia logit formulation, and then
add extensions that relax smplifying assumptions and enrich the capabilities of the basic model. The
extensions include;

- Specifying factor analytic (probit-like) disturbances in order to provide aflexible covariance
structure, thereby relaxing the 1A condition and enabling estimation of unobserved heterogeneity
through techniques such as random parameters.

- Combining revealed and stated preferences in order to draw on the advantages of both types of data,
thereby reducing bias and improving efficiency of the parameter estimates.

- Incorporating latent variables in order to provide aricher explanation of behavior by explicitly
representing the formation and effects of latent constructs such as attitudes and perceptions.

- Stipulating latent classes in order to capture latent segmentation, for example, in terms of taste
parameters, choice sets, and decision protocols.



The guiding philosophy is that the generdized framework alows for a more redlistic representation of the
behavior inherent in the choice process, and consequently a better understanding of behavior,
improvements in forecasts, and valuable information regarding the validity of smpler model structures.

These generalized moddls often result in functional forms composed of complex multidimensiona integrals.
Therefore a key aspect of the framework isits ‘logit kernel” formulation in which the disturbance of the
choice modd includes an additivei.i.d. Gumbel term. This formulation can replicate al known error
structures (as we show here) and it leads to a straightforward probability smulator (of a multinomia logit
form) for use in maximum simulated likelihood estimation. The proposed framework and suggested
implementation leads to aflexible, tractable, theoreticaly grounded, empiricaly verifiable, and intuitive
method for incorporating and integrating complex behaviora processes in the choice model.

In addition to the generalized framework, contributions are also made to two of the key methodol ogies that
make up the framework. First, we present new results regarding identification and normalization of the
disturbance parameters of alogit kernel model. In particular, we show that identification is not aways
intuitive, it is not always analogous to the systematic portion, and it is not necessarily like probit. Second,
we present a genera framework and methodology for incorporating latent variables into choice models via
the integration of choice and latent variable models and the use of psychometric data (for example,
responses to attitudinal survey questions).

Throughout the dissertation, empirica results are presented to highlight findings and to empirically
demonstrate and test the generalized framework. The impact of the extensions cannot be known a priori,
and the only way to test their value (as wdll as the validity of asimpler model structure) is to estimate the
complex models. Sometimes the extensions result in large improvements in fit as well asin more satisfying
behavioral representations. Conversely, sometimes the extensions have marginal impact, thereby showing
that the more parsimonious structures are robust. All methods are often not necessary, and the generalized
framework provides an approach for developing the best model specification that makes use of available
data and is reflective of behaviora hypotheses.

Thesis Supervisor: Moshe E. Ben-Akiva
Titlee: Edmund K. Turner Professor of
Civil and Environmenta Engineering
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Chapter 1:

Introduction

This dissertation is concerned with the enhancement of discrete choice models, which are methods used
to model a decison-maker’s choice among a set of mutually exclusive and collectively exhaustive
aternatives. The guiding philosophy is that such enhancements allow for more behavioraly redistic
representations of the choice process, and consequently a better understanding of behavior, improvements
in forecasts, and vauable information regarding the validity of smpler model structures.

Motivation
There are 4 mgjor factors that motivate the work described in this dissertation:

The desire to model discrete choice behavior in abroad array of disciplines (transportation, economics,
psychology, public policy, etc.) for a variety of reasons, including:

- to provide forecasts to inform policy and marketing decisions, and

- to better understand and test hypotheses of behavior.

The complexity of the behavioral processes by which people make choices, which isinfluenced by
latent concepts such as context, knowledge, and attitudes. (As advanced by behaviora theorists.)

Conversdly, the smplistic behaviora representation of the standard quantitative models of behavior,
which, in practice, are dominated by the multinomia and nested logit formulations. (As developed by
discrete choice modelers.)

Continuing advances in the areas of computationa power, estimation methodologies, and the
availability of different types of behavioral data.

The work presented here aims to develop, demonstrate, and test a methodological framework to close the
gap between the smplistic behavioral representation in today’ s models (discrete choice models) and the
complexity of the actua behavioral process (behavioral theory), thereby improving the specification and
explanatory power of discrete choice models.
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The Foundation of Quantitative Models of Discrete Choice Behavior

The standard tool for modeling individual choice behavior is the choice model based on the random utility
hypothesis. These models have their foundations in classic economic consumer theory, which is the source
of many of the important assumptions of the modéls. Therefore, it is aso the source of much debate
surrounding the models as well asthe fuel for extensions. In this section we briefly overview economic
consumer theory, discuss how it extends to discrete choice theory, and present the basics of the random
utility choice modd.

Economic consumer theory states that consumers are rational decision makers. That is, when faced with a
set of possible consumption bundles of goods, they assign preferences to each of the various bundles and
then choose the most preferred bundle from the set of affordable aternatives. Given the properties of
completeness (any two bundles can be compared, i.e., either aispreferred to b, or b is preferred to a, or
they are equally preferred), transitivity (if a ispreferred to b and b is preferred to ¢, then a is preferred to
¢) and continuity (if aispreferred to b and c isarbitrarily ‘close’ to a, then c is preferred to b), it can be
shown that there exists a continuous function (the utility function) that associates a real number with

each possible bundle, such that it summarizes the preference orderings of the consumer. Consumer
behavior can then be expressed as an optimization problem in which the consumer selects the consumption
bundle such that their utility is maximized subject to their budget congtraint. This optimization function can
be solved to obtain the demand function. The demand function can be substituted back into the utility
equation to derive the indirect utility function, which is the maximum utility that is achievable under the
given prices and income. The indirect utility function iswhat is used in discrete choice models, and we
refer to thissmply as ‘utility’ throughout the dissertation. (See, for example, Varian, 1992, for further
information on consumer theory.)

There are severa extensions to classic consumer theory that are important to discrete choice models.
First, consumer theory assumes homogeneous goods (a car is a car), and therefore the utility isafunction
of quantities only and not attributes. Lancaster (1966) proposed that it is the attributes of the goods that
determine the utility they provide, and therefore utility can be expressed as a function of the attributes of
the commodities.

Second is the concept of random utility theory originated by Thurstone (1927) and further devel oped by
Marschak (1960) and Luce (1959). Whereas classic consumer theory assumes deterministic behavior,
random uitility theory introduces the concept that individual choice behavior isintrinsicaly probabilitic. The
idea behind random utility theory is that while the decision maker may have perfect discrimination
capability, the analyst has incomplete information and therefore uncertainty must be taken into account.
Therefore, utility is modeled as arandom variable, consisting of an observable (i.e., measurable
component) and an unobservable (i.e., random) component. Manski (1977) identified four sources of
uncertainty: unobserved aternative attributes, unobserved individua attributes (or taste variations),
measurement errors, and proxy (or instrumental) variables.

Finally, consumer theory deals with continuous (i.e., infinitely divisble) products. Caculusis used to derive
many of the key results, and so a continuous space of alternatives is required. Discrete choice theory deals
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with a choice among a set of finite, mutually exclusive aternatives and so different techniques need to be
used. However, the underlying hypotheses of random utility remain intact.

The standard technique for modeling individua choice behavior is the discrete choice modd derived from
random utility theory. Asin consumer theory, the model is based on the notion that an individual derives
utility by buying or choosing an alternative. Usually, the models assume that the individua sdlects the
alternative that has the maximum utility, but other decision protocols can be used. The (indirect) utilities
are latent variables, and the actual choice, which iswhat can be observed, is a manifestation of the
underlying utilities. The utilities are specified as proposed by Lancaster (1966) and McFadden (1974), in
which they are assumed to be a function of (i.e., caused by) the attributes of the alternatives and the
characteristics of the decision maker (introduced to capture heterogeneity across individuals). The final
component of the utility is arandom disturbance term. Assumptions on the distributions of the disturbances
lead to various choice models (for example, probit and logit). The outputs of the models are the
probabilities of an individual selecting each aternative. These individua probabilities can then be
aggregated to produce forecasts for the population.

Simplifying assumptions are made in discrete choice models in order to maintain a parsmonious and
tractable structure. Such assumptions include utility maximizing behavior, deterministic choice sets,
straightforward explanatory variables (for example, easily measurable characteristics of the decision-
maker and attributes of the aternatives), and simple error structures such as GEV disturbances
(multinomid logit, nested logit, cross-nested logit). There is a more extensive discussion of discrete choice
models later in this chapter, and these models and their variants will be described in detail throughout the
dissertation. (For a general discussion of discrete choice theory, see BenrAkiva and Lerman, 1985, or
McFadden, 1984.)

Qualitative Concepts of Behavioral Theory

Due to the strong assumptions and smplifications in quantitative discrete choice models, there has been
much debate in the behavioral science and economics communities on the vaidity of such models. For
example, one well-publicized issue with multinomial logit modelsis the property of Independence from
Irrelevant Alternatives (or 11A), which will be discussed later.

Behavioral researchers have stressed the importance of the cognitive processes on choice behavior. Far
from the concept of innate, stable preferences that are the basis of traditional discrete choice models, they
emphasi ze the importance of things such as experience and circumstances and a whole host of amorphous
concepts, some of which arelisted in Table 1-1. These behavioral constructs are pervasive throughout
consumer behavior textbooks (for example, Engel, Blackwell and Miniard, 1995; Hawkins, Best and
Coney, 1989; and Olson, 1993) and research journals (for example, Journal of Applied Social
Psychology, Journal of Marketing Research, Journal of Consumer Psychology, etc.). Many detailed
and comprehensive representations of the consumer choice process have been proposed by behaviora
researchers, the most widely cited being those by Engel et a. (EKB) (1968, 1982, 1995); Howard and
Sheth (1969) and Howard (1977 and 1989); and Nicosia (1966) and Nicosia and Wind (1977). These
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models are described in many consumer behavior textbooks including Engel and Blackwell (1982),
Onkvisit and Shaw (1994), and Rice (1993). These researchers take a systems dynamics approach in
which equations (often linear) are associated with connectivity as represented in aflow diagram. The
behavioral process that is represented is complex, with extensive connectivity and feedback between the
behavioral states and constructs. For example, the Howard and EKB frameworks are presented in Figure
1-1 and Figure 1-2. As would be expected, mathematically capturing this process is difficult. Some of the
issues with the estimation techniques used for these models are that they are not grounded in economic
consumer theory, and they depend on the use of psychometric indicators (for example, responses to
survey questions regarding attitudes, perceptions, and memory) as causal variables in the process (see
Chapter 3 for a discussion). Nonetheless, such representations are extremely valuable in conceptudizing
and studying the behavioral process.

In addition to the grand behavioral frameworks discussed above, there has been alot of research on
specific aspects of the behaviora process, including every concept shown in Table 1-1, Figure 1-1, and
Figure 1-2. It isa huge literature, which we cannot hope to give justice here. Ajzen (2001), Olson and
Zanna (1993), and Wood (2000) provide a summary of research on attitudes, which isamajor emphasisin
the literature. Jacoby et a. (1998) and Simonson et al. (2001) provide a broader review of consumer
behavior research.

Furthermore, a great deal of research has been conducted to uncover cognitive anomalies that appear to
violate the basic axioms of the utility maximization foundations of discrete choice theory. The fundamental
work in this area was performed by Kahneman and Tversky (for example, Kahneman and Tversky, 1979,
Tversky, 1977, and Tversky and Kahneman, 1974), who accumulated experimental evidence of
circumgtances in which individuals exhibit surprising departures from rationality. They found that decison
makers are sensitive to context and process, they are inconsistent at forming perceptions and processing
information, and they use decision-making heuristics. Some of the issues emphasized by cognitive
psychologists are the degree of complexity, familiarity, and risk of the choice at hand (see, for example,
Ajzen, 1987, and Gérling, 1998); the use of non-utility maximizing decision protocols such as problem:
solving, reason-based, and rule-driven processes (see, for example, Payne et al., 1992, and Prelec, 1991);
and the concept of ‘framing effects’, which is that people often accept and use information in the formin
which they receiveit (see, for example, Slovic, 1972, and Schweitzer, 1995); and a whole host of other
perceived biases and errors associated with rational theory.
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Table 1-1: Influences on the Choice Process

Context Knowledge Point of View Choice
Experience Awareness Perceptions Problem Recognition
Involvement Search Attitudes Constraints
Motivation Exposure Beliefs Compliance
Attention Memory Lifestyle Evaluation Criteria
Stimuli Learning Behavior modification Decision protocol
Intention Comprehension Cultural Norm/Values
Recall Satisfaction
Information
Reference Groups
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Figure 1-1: The Howard Model of Consumer Behavior
(Figure taken from Engdl and Blackwell, 1982)
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Figure 1-2: The EKG Model of Consumer Behavior
(Figure taken from Engel and Blackwell, 1982)
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Camerer (1987), Mdlers et d. (1998), Rabin (1998), and Thaler (1991) provide surveys of the research in
cognitive anomalies from a behavioral scientists reference point. McFadden (1997) provides a summary of
the work from a discrete choice modelers view. He argues that “most cognitive anomalies operate through
errors in perception that arise from the way information is stored, retrieved, and processed” and that
“empirical study of economic behavior would benefit from closer attention to how perceptions are formed
and how they influence decision-making.”

The Gap Between Behavioral Theory and Discrete Choice Models

Asimplied by the discussion above, there is alarge gap between behaviora theory and discrete choice
models. The gap exists because of the driving forces behind the two disciplines: while discrete choice
modelers are focused on mapping inputs to the decision, behavioral researchers aim to understand the
nature of how decisions come about, or the decision-process itself. The graphic in Figure 1-3 highlights this
difference. Thisfigure, as well as the remaining figures in the dissertation, follows the convention that
unobservable variables are shown in ovals, observable variadesin rectangles, causa relationships by solid
arrows, and measurement relationships by dashed arrows.

Explanatory Variables Explanatory Variables

l

Memory,
Knowledge
Attitudes, Perceptions,
Tastes Beliefs
4 / /
Preferences Motivation, Preferences
(Utilities) Context, Affec (Utilities)
Time & Dolla\

Choice Set

Utility
g:r:(;mv:élrng Constraints
4
Choie Choie
(Revealed Preference) (Revealed Preference)

Figure 1-3: The gap between basic Discrete Choice Models (left)
and the Complexity of Behavior (right)
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The framework for the basic discrete choice mode is shown on the |eft. The preferences (represented by
utilities) are unobservable, but they are assumed to be a function of explanatory variables aswell as
unknown parameters (or weights) and a disturbance term. The choice is a manifestation of the
preferences, and the typical assumption is that the aternative with the maximum utility is chosen. This
modd is often described as an “optimizing black box”, because the modd directly links the observed inputs
to the observed output, and thereby assumes that the mode implicitly captures the behavioral choice
process.

The right side of Figure 1-3is an attempt to show the inherent complexity of the behavioral process itself.”
While one could argue about the specific terminology, components, and connectivity, the objective of the
figure isto provide an example of a more redlistic representation of the underlying choice process.

The question is, does the gap matter? Or, is the optimizing black box an adequate representation? In terms
of applying the models, clearly the most desirable model is the one that is as parsmonious as possible, and
yet serves the purpose at hand. We have found in many instances that the multinomial logit formulation is
quite robust. However, there are instances in which a more complex model structure could be of use, for
example:

To provide confidence that a parsimonious specification is adequate.

To improve forecasts.

To test aparticular behaviora theory or hypothesis having to do with a construct in the black box.

To correct for biases and so-called cognitive anomalies in responses.

To introduce different types of measurement relationships (beyond just the revealed choice preference

indicator) that are hypothesized to provide information on the choice process.

What specifically can we do to enhance the choice model ? Researchers have been working on this for
some time, and thisis the topic of this dissertation.

The State of the Practice in Discrete Choice Modeling
and Directions of Research

The background of the random utility model was presented above, and a framework shown in Figure 1-3.
The genera model is written mathematically as follows:

U, =V(X;;q)+e, , “Structural Equation”
Y= fU,), “Measurement Equation”
where; N denotesanindividud, n=1,...,N ;

I,] denotedternatives, i,j=1,...,J;

! Thefigureis adapted from Ben-Akiva, McFadden et al. (1999) and M cFadden (2000).

18



is the number of aternatives considered by individua n;
isthe utility of aternative i as perceived by individua n; U, isthe (J," 1
vector of utilities;

y,, isthechoiceindicator (equal to 1 if aternative i ischosen, and O otherwise),
and y, isthe (J,” 1) vector of choiceindicators;

V isafunction that expresses the systematic utility in terms of explanatory
variables,

f isafunction that represents the decision protocol as a function of the utility
vector;

q areaset of unknown parameters,

are random disturbance terms; and

X,, isa (1" K) vector describing n and i; X, isthe (J,” K) matrix of stacked

X,

in*

The most common discrete choice modd is the linear in parameters, utility maximizing, multinomia logit
model (MNL), developed by McFadden (1974), which is specified as:

U,=X,,b+n,, n, aeiid Gumbe random variateswith scae parameter m, [1-1]

1L ifU, =max{U }
yin =1 j . [1'2]
10, otherwise

Equations [1-1] and [1-2] lead to the following individua choice probability:
gm(Xinb)
P(ym :1| Xn; b) = W )

iic

n

where: C, isthechoice set faced by individua n, comprised of J,, aternatives, and

n

b isa (K" 1) vector of unknown parameters.

One of the most noteworthy aspects of the multinomid logit model is its property known as Independence

from Irrdlevant Alternatives (or I1A), which is aresult of thei.i.d. disturbances. The I1A property states
that, for agiven individud, the ratio of the choice probabilities of any two dternatives is unaffected by
other alternatives. This property was first stated by Luce (1959) as the foundation for his probabilistic
choice model, and was a catayst for McFadden's development of the tractable multinomia logit model.

There are some key advantagesto I1A, for example, the ability to estimate a choice model using a sample
of aternatives, developed by McFadden (1978). However, as Debreu (1960) pointed out, I1A aso has the
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distinct disadvantage that the model will perform poorly when there are some alternatives that are very
gmilar to others (for example, the now famous red bus — blue bus problem).

There are many ways to relax the I1A assumption, and many variations of discrete choice models aim at
doing just that. Nested logit (NL), introduced by BentAkiva (1973) and derived as arandom utility model
as aspecia case of GEV by McFadden (1978, 1981), partidly addresses this issue by explicitly alowing
correlation within sets of mutually exclusive groups of alternatives. The beauty of nested logit is that it
retains an extremely tractable closed form solution, and therefore is widely used (second only in popularity
to multinomial logit).

Multinomia and nested logit are the workhorses of discrete choice modeling, and form the foundation of
models in areas such astravel demand modeling and marketing. This is because they are extremely
tractable and fairly robust models that are widely described in textbooks (for example, Ben-Akivaand
Lerman, 1985; Greene, 2000; Louviere et al., 2000; Ortuzar and Willumsen, 1994) and can be easily
estimated by numerous estimation software packages (for example, HieLow’ and Al ogitg). Nested logit
models have been used to estimate extremely complex decision processes, for example, detailed
representations of individua activity and travel patterns (see Ben-Akiva and Bowman, 1998).

Beyond MNL and NL, there are many directions for enhancements that are pursued by discrete choice
modelers. These directions are loosely categorized (with admitted overlap across categories) and
discussed below, and the chapters that follow contain more detailed literature reviews on many of these
topics. For further information, McFadden (2000) provides an excellent review of the history and future
directions of discrete choice theory.

Specification of the Disturbances

There has been alot of research focused on introducing more flexibility to the covariance structure of
MNL in order to relax 11A and improve the performance of the model. Nested logit is one example of this
area. In addition, there are a numerous other variations on the logit theme, albeit none that comes close to
the popularity of MNL and NL. Cross-nested logit (CNL ), relaxes the error structure of nested logit by
allowing groups to overlap. CNL was first mentioned by McFadden (1978) and further investigated and
applied by Small (1987) for departure time choice, Vovsha (1997) for mode choice, and VVovsha and
Bekhor (1998) for route choice. MNL, NL, and CNL are all members of the General Extreme Value, or
GEV, class of models, devel oped by McFadden (1978, 1981), a general and elegant model in which the
choice probabilities till have tractable logit form but do not necessarily hold to the 1A condition. Thereis
also the heteroscedastic extreme value logit model, which allows the variance of the disturbance to vary
across aternatives. This was developed and applied by Bhat, 1995, for travel mode choice and tested
againgt other GEV and probit models using synthetic data by Munizaga et a. (2000).

2 Distributed by Stratec.
: Distributed by Hague Consulting Group.
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The other mgjor family of discrete choice models is the probit family, which has a multivariate normal
distributed disturbance. The early investigations of probabilistic choice models (Aitchison and Bennett,
1970; Bock and Jones, 1968; Marschak, 1960) were of probit form, because it is natural to make normaity
assumptions. Probit is extremely flexible, because it dlows for an unrestricted covariance matrix, but is
less popular than the GEV forms primarily due to the difficulty in estimation (i.e., lack of aclosed form
solution). Much of the research on probit is in the areas of estimation (for example, Clark, 1961, devel oped
an early used approximation; Lerman and Manski, 1981, pioneered the use of smulation for econometric
models; and Geweke, Hajivassiliou, and K eane devel oped the now common GHK simulator’, which made
great strides in increasing the tractability of probit) and in simplifying the error structure (for example,
McFadden, 1984, proposed using a factor anaytic form to reduce the dimensiondity of the integral).
Daganzo (1979) provides a thorough examination of probit, and the model is widely described in
Econometrics textbooks, for example, Amemiya (1985), Ben-Akiva and Lerman (1985), and Greene
(2000).

Logit kerndl (or continuous mixed logit model) isamode that attempts to combine the relative advantages
of probit and GEV forms, and thisis the subject of Chapter 3. It is a powerful and practica modd that has
recently exploded in the applied literature (see Chapter 3 for references) and is making its way into
econometric textbooks, for example, Greene, 2000, and Louviere et a., 2000. The disturbance of the logit
kernd modd is composed of two parts. a probit-like term, which dlows for flexibility, and ani.i.d. Gumbel
(or GEV) term, which aids in estimation. The technique was used as early as Boyd and Mellman (1980)
and Cardell and Dunbar (1980) for the specific application of random parameter logit. The more general
form of the model came about through researchers quest for smooth probability smulators for usein
estimating probit models. McFadden's 1989 paper on the Method of Simulated Moments, includes a
description of numerous smooth simulators, one of which involved probit with an additivei.i.d. Gumbel
term. Stern (1992) described a similar smulator, which has an additive i.i.d. normal term instead of the
Gumbel. At the time of these papers, there was a strong desire to retain the pure probit form of the model.
Hence, the algorithms and specifications were designed to eventualy remove the additive “contamination”
element from the modd (for example, McFadden, 1989) or ensure that it did not interfere with the pure
probit specification (for example, Stern, 1992). Bolduc and Ben-Akiva (1991)5 did not see the need to
remove the added noise, and began experimenting with models that left the Gumbel term in tact, and found
that the method performed well. There have been numerous relatively recent applications and
investigations into the model (see Chapter 3). A particularly important contribution is M cFadden and
Train's (2000) paper on mixed logit, which both (i) proves that any well-behaved RUM-consistent
behavior can be represented as closely as desired with amixed logit specification and (ii) presents easy to
implement specification tests for these models.

* See Hajivassiliou and Ruud, 1994, for a description of GHK.
° Later generdized in Ben-Akiva and Bolduc (1996).
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Incorporating Methods from Related Fields

There has been a growing effort to incorporate the findings and techniques from related fields into applied
discrete choice models. We highlighted above the contributions of psychologists and behaviord theorigs,
who have studied how decisions are made and have researched cognitive anomalies that appear to violate
the axioms of the discrete choice model. There have aso been key influences from two other groups of
researchers.

Psychometricians

Psychometricians, in their quest to understand behavioral constructs, have pioneered the use of
psychometric data, for example, answers to direct survey questions regarding attitudes, perceptions,
motivations, affect, etc. A genera approach to synthesizing models with latent variables and psychometric-
type measurement models has been advanced by a number of researchers including Keedling (1972),
Joreskog (1973), Wiley (1973), and Bentler (1980), who devel oped the structural and measurement
equation framework and methodology for specifying and estimating latent variable models. Such models
are widely used to define and measure unobservable factors, including many of the constructs shown in
Figure 1-3. The incorporation of these latent variable techniques (for example, factor analysis) into choice
modelsis the topic of Chapter 3.

Market Researchers

Whereas psychometricians tend to focus on behavioral constructs such as attitudes and perceptions,
market researchers tend to focus on preferences. They have long used stated preference (conjoint) data
to provide insight on preferences. The analysis of stated preference data originated in mathematical
psychology with the semina paper by Luce and Tukey (1964). The basic ideais to obtain a rich form of
data on behavior by studying the choice process under hypothetical scenarios designed by the researcher.
There are many advantages to these data including the ability to: capture responses to products not yet on
the market, design explanatory variables such that they are not collinear and have wide variability, control
the choice set, easily obtain numerous responses per respondent, and employ various response formats
that are more informative than a single choice (for example, ranking, rating, or matching). Areas of
research include experimental design, design of choice experiments, developing the choice model, and
validity and biases. See Carroll and Green (1995) for a discussion of the methods and Louviere et al.
(2000) for a general review of al issues. The primary drawback to stated preference datais that they may
not be congruent with actual behavior. For this reason, techniques to combine stated and revealed
preferences (devel oped by Ben-Akiva and Morikawa, 1990, and described in Chapter 4), which draw on
the relative advantages of each type of data, are becoming increasingly popular (see Chapter 4 for
references).

Preference and Behavior Indicators

We highlight the different type of indicators because amajor emphasisin this thesisis making use of the
various types of information we have to provide insight on the behaviora process. First, there are many
different types of choice indicators, and variations of the logit model have been developed for the various
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types, for example ordinal logit when responses are in the form of an ordinal scale or dynamic choice
models for panel data (see, for example, Golob et d., 1997). Second, there has been alot of research on
techniques specific to stated preference responses, as mentioned above. Findly, there can aso be
indicators for the behaviora processitsdlf (e.g., survey questions regarding attitudes, memory, or decision
protocol), and the latent variak e techniques described above aim to make use of such psychometric
indicators; the use of such datain choice models is the topic of Chapter 3.

Choice Process Heterogeneity

A key area of enhancements to discrete choice models is related to the idea that there is heterogeneity in
behavior across individuas, and ignoring this heterogeneity can result in forecasting errors. For example,
BenrAkiva, Bolduc, and Bradley (1994) demonstrated the significance of unobserved heterogeneity on the
demand curve for toll facilities. The most straightforward way to address this issue is to capture so-caled
“observed heterogeneity” by introducing socio-economic and demographic characteristics in the
systematic portion of the utility function (i.e., in V (+) ). This has been an emphasis in forecasting models
since the early applications, for example in the urban travel demand models developed by Domencich and
McFadden (1975) and Ruiter and Ben-Akiva (1978). Alternatively, there are numerous techniques aimed
a capturing unobserved heterogeneity. Quandt (1970) and Hausman and Wise (1978) introduced the
concept of random parameters to the probit model, and Boyd and Mellman (1980) and Cardell and Dunbar
(1980) estimated random parameter logit models. There are numerous recent applications of this
technique, see, for example, Hensher and Reyes, 2000, and Mehndiratta and Hansen, 1997. Thiswill be
discussed in Chapter 3 within the context of the logit kernel framework. Another technique is latent class
models, which can be used to capture unobservable segmentation regarding tastes, choice sets, and
decision protocols. The concept of discrete mixing of functions (termed finite mixture models) has been
around along time (at least since Pearson, 1894), and McLachlan and Basford (1988) offer areview of
these methods. The technique entered the choice behavior context with work by Manski (1977) in the
context of choice set generation and Kamakura and Russell (1987) in the context of taste variation.
Gopinath (1995) devel oped a general and rigorous treatment of the problem within a choice context.
Latent class models are further discussed in Chapter 4.

Data, Estimation Techniques, and Computational Power

Fueling al of the extensions discussed above are the advances being made in data collection (for example,
information technology, the collection of more refined data, stated preferences, and psychometric data),
estimation techniques (in particular, the use of the simulation techniques pioneered by Lerman and Manski,
1981, McFadden, 1989, and Pakes and Pollard, 1989, and excellently reviewed in Stern, 2000), and
computationa power. These improvements make the estimation of behaviorally realistic models more
atainable.

Objectives
While there have been numerous advances in discrete choice modeling, typicaly each of these extensions
is examined and applied in isolation and there does not exist an integrated methodologica framework. The
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objective of thisresearch isto develop a generalized discrete choice mode to guide the progress of models
towards more behavioraly realistic representations with improved explanatory power. The resulting
framework must be mathematically tractable, empiricaly verifiable, theoretically grounded, and have the
ability to incorporate key aspects of the behaviora decision making process.

To achieve this objective, we devel op, demonstrate, and test an overall framework that meets the stated
specifications, including the synthesis of the various extensions discussed in the preceding section. We also
provide in-depth analysis regarding specification, estimation, and identification of two of the key
components of the framework:

1. The specification of flexible error structures and the logit kernel mode.

2. Theincorporation of latent variablesinto discrete choice models.

Overview of the Generalized Framework

The proposed generalized framework is shown in Figure 1-4. The framework draws on ideas from a great
number of researchers, including Ben-Akiva and Morikawa (1990) who developed the methods for
combining revealed and stated preferences, Cambridge Systematics (1986) and McFadden (1986) who
laid out the origina ideas for incorporating latent variables and psychometric data into choice models, Ben+
Akiva and Boccara (1987) and Morikawa, Ben-Akiva, and McFadden (1996) who continued the
development for including psychometric data into choice modes, Gopinath (1995) who developed rigorous
and flexible methods for capturing latent class segmentation in choice models; and BentAkiva and Bolduc
(1996) who introduced an additive factor andytic parameterized disturbance to the multinomia logit i.i.d
Gumbd.

Asshown in Figure 1-4, the core of the modd is a sandard multinomia logit mode (highlighted in bold),
and then extensions are added to relax smplifying assumptions and enrich the capabilities of the basic
model. The extensions include:

Factor analytic (probit-like) disturbances in order to provide aflexible covariance structure,
thereby relaxing the I1A condition and enabling estimation of unobserved heterogeneity through, for
example, random parameters.

Combining revealed and stated preferences in order to draw on the advantages of the two types of
data, thereby reducing bias and improving efficiency of the parameter estimates.

Incorporating latent variables in order to provide aricher explanation of behavior by explicitly
representing the formation and effects of latent constructs such as attitudes and perceptions.

Stipulating latent classes in arder to capture latent segmentation in terms of, for example, taste
parameters, choice sets, and decision protocols.

The framework has its foundation in the random utility theory described above, makes use of different
types of data that provide insight into the choice process, alows for any desirable disturbance structure
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(including random parameters and nesting structures) through the factor analytic disturbance, and provides
means for capturing latent heterogeneity and behavioral constructs through the latent variable and latent
class modeling structures. Through these extensions, the choice model can capture more behaviorally
realistic choice processes. Furthermore, the framework can be practicaly implemented via use a the logit
kernel smooth smulator (as aresult of the additive i.i.d. Gumbel) and a maximum simulated likelihood
estimator.

The dissertation includes both an in-depth presentation and application of this framework, aswell as
extended investigations into two key aspects of the framework: the specification and identification of the
disturbances and the incorporation of latent variables.

/ Explanatory \
Variables

Latent Class Disturbances __ / \ __ Disturbances Latent Variable

A& «' Model

Model
. Latent Latent .
Indicators -« > > Indicators
\ /
RP and SP Disturbances, Factor Analytic
v < Disturbances, & i.i.d. Gumbel

——y Choice Indicators:
Stated

|
|
v

Choice Indicators:
Revealed

~——

Choice Model

Figure 1-4: Generalized Discrete Choice Framework

Outline of the Dissertation
The dissertation is organized as follows:

Chapter 2 focuses on the specification of the random component of the utility function. The basic idea
behind the extension that is discussed is to develop generd and tractable models with flexible error
structures. Such structures aim to relax the 1A property of the logit model and are able to capture a
variety of sources of heterogeneity among individuals. The modd discussed is a hybrid between logit
and probit, caled logit kernel, which isamodd that is becoming wildly popular in the discrete choice
model literature. We specify the model using afactor analytic structure, and we show that this
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specification can represent any desirable error structure. In addition, we establish specific rules for
identification, which has thus far been largely ignored in the literature. Empirical results are presented
using both synthetic and real data to highlight issues of specification and identification.

Chapter 3 focuses on the specification of the systematic part of the utility function. The motivation for
the methodology we investigate is that there are often causal variables and behavioral constructs that
are important to the choice process, but which are not directly observable. The method discussed in
this chapter is the explicit incorporation of latent constructs such as attitudes and perceptions (or, more
generaly, any of the conceptsin Table 1-1 or Figure 1-3) in the choice model. The objectiveisto
develop models that more accurately represent the behavioral process, and therefore provide more
accurate forecasts of demand. This method makes use of what are called psychometric indicators, for
example, responses to survey questions about attitudes or perceptions, which are hypothesized to be
manifestations of the underlying latent behavioral constructs. The chapter presents a general
framework and methodology for incorporating latent variables into choice models. Empirical results
from prior dissertations are reviewed to provide examples of the method and to demonstrate its
practicality and potential benefits.

Chapter 4 provides the generdlized framework that aims to incorporate al extensions to the discrete
choice model. The framework includes as important components the latent variable techniques
described in Chapter 2 and the flexible error structures discussed in Chapter 3. These methods are
summarized along with other techniques that are incorporated in the framework. Empirical results are
presented to demonstrate and test the use and practicality of the generalized discrete choice moddl.

Chapter 5 provides a summary and directions for further research.

Contributions
This dissertation represents a combination of summary, synthesis, and development. The specific
contributions presented in this document are as follows:

Flexible Error Structures and the Logit Kernel Model

The Logit Kernel Model, which is the focus of Chapter 2, is avery flexible and powerful method for
introducing flexible error structures in discrete choice models. It is arelatively new and extremely en
vogue model form — even deemed ‘the model of the future' by some. There are two important
contributions in this chapter. The first is the use of a factor analytic form for the error structure, which we
show is able to represent any desirable (additive) error structure. (This contribution was originaly
presented by Ben-Akiva and Bolduc, 1996, of which the chapter presented here represents a major
revision). The second contribution is that it turns out that there are numerous specification and
identification issues that are vital to practica application of these models and yet, to our knowledge, are not
recognized in the existing literature. This chapter presents new resultsin this area, including the
development of specific rules for identification and normalization of the parametersin the error structure.
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Empirica results using both synthetic and real data are provided to highlight the specification and
identification issues raised in the chapter.

The research presented here has important implications on the logit kernel model, which is the focus of the
chapter. Furthermore, there are results that are applicable to any kernel specification (for example, probit
kernel) and to any random parameter discrete choice specifications (for example, random parameter
probit).

Integrating Choice and Latent Variable Models

While the ideas of combining choice and latent variables have been around for some time (for example,
Cambridge Systematics, 1986; McFadden, 1986; and Ben-Akiva and Boccara, 1987), the literature
contains only empirical applications to specific problems (for example, the case studies reviewed here) or
restricted modd formulations (for example, the elegant formulation for a binary probit and MIMC model
presented in McFadden, 2000, and Morikawa et d., 1996). The contribution in this dissertation is the
development of agenera framework and methodology (including specification, identification, and
estimation) for incorporating latent variables in discrete choice models. The described method provides
complete flexibility in terms of the formulation of both the choice mode and the latent variable modd. In
addition, the method is placed within alarger framework of aternative approaches, and a theoretical
comparison of the various methods is provided. The case studies reviewed in Chapter 3 were developed
earlier by others and are reviewed here to provide examples of the methodology. The empirical results for
the choice and latent variable model presented in Chapter 4 are new to this dissertation.

Generalized Discrete Choice Model

The fina chapter summarizes and synthesizes a variety of extensions to the discrete choice model. While
the existing literature focuses on developing and applying the methods independently, the key contribution
of this chapter is the integration of methods and presentation of a generalized discrete choice model and
estimation method that incorporates all extensions. The basic technique for integrating the methods is to
start with the multinomial logit formulation, and then add extensions that relax smplifying assumptions and
enrich the capabilities of the basic model. These models often result in functional forms composed of
complex multidimensiona integras. The core multinomid logit formulation allows for relatively
sraightforward estimation via the maximum simulated likelihood techniques and the logit kernel smulator.
The proposed framework and suggested implementation leads to aflexible, tractable, practical, and
intuitive method for incorporating and integrating complex behavioral processes in the choice model. This
chapter provides empirical results that demonstrate and test the practicality of the generaized framework.
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Chapter 2:
Flexible Error Structures and the
Logit Kernel Model

The extension presented in this chapter focuses on the specification of the error portion of the utility
function. The basic idea is the development of general and tractable models with flexible error structures
that relax the independence from irrelevant aternatives (I11A) property of the Logit model, and are able to
capture a variety of sources of heterogeneity among individuals.

The model discussed in this chapter (caled the Logit Kernel Model) is a very flexible and powerful
method for introducing flexible error structures in discrete choice models. In this chapter we show how a
factor analytic form of the error structure can be used to replicate all known error structures. We aso
present new results regarding normalization and identification of the disturbance parameters of the logit
kernel mode!.

Introduction
The logit kernel model is a straightforward concept: it is a discrete choice mode in which the disturbances
(of the utilities) consist of both a probit-like portion and an additivei.i.d. Gumbe portion (i.e., a multinomia
logit disturbance).

Multinomid logit (MNL) has its well-known blessing of tractability and its equaly well-known curse of a
rigid error structure leading to the 1A property. The nested logit model relaxes the rigidity of the MNL
error structure and has the advantage of retaining a probability function in closed form. Nonetheless,
nested logit is till limited and cannot capture many forms of unobserved heterogeneity, including, for
example, random parameters. The logit kernel modd with its probit-like disturbances completely opens up
the specification of the disturbances so that amost any desirable error structure can be represented in the
modd. Aswith probit, however, this flexibility comes at a cost, namely that the probability functions
consist of multi-dimensiona integras that do not have closed form solutions. Standard practiceis to

28



estimate such models by replacing the choice probabilities with easy to compute and unbiased smulators.
The beauty of the additive i.i.d. Gumbel term isthat it leads to a particularly convenient and attractive
probability smulator, which is smply the average of a set of logit probabilities. The logit kernel probability
smulator has all of the desirable properties of a smulator including being convenient, unbiased, and
smooth.

Terminology

There are numerous terms floating around the literature that are related to the logit kernel model that we
present here. McFadden, Train, and others use the term “mixed logit” to refer to models that are
comprised of amixture of logit models. Thisis a broad class that encompasses any type of mixing
distribution, including discrete distributions (for example, latent class) as well as continuous distributions.
Within this reference, logit kerndl is a specia case of mixed logit in which the mixing distribution is
continuous. There are aso numerous terms that are used to describe various error specificationsin
discrete choice models, including error components, taste variation, random parameters (coefficients),
random effects, unobserved heterogeneity, etc. When such models are specified in aform that includes an
additive i.i.d. Gumbel term, then they fall within the logit kernel (as well as mixed logit) class of models.
Many of these special cases are described later in the chapter.

We choose to use the term logit kernel, because conceptually these models start with alogit model at the
core and then are extended by adding a host of different error terms. In addition, the term is descriptive of
the form of the likelihood function and the resulting logit kernel smulator.

Organization of the Chapter

The chapter is organized as follows. Firgt, we introduce the logit kernel model and present a genera
discussion of identification. Then we discuss specification and identification of several important special
cases, which are all based on afactor anaytic representation of the error covariance structure. Next, we
focus on the estimation of logit kernel via maximum (smulated) likelihood. In the final section, we present
empirica results that highlight some of the specification and identification issues.

Related Literature

There have been many previous efforts to extend the logit model to allow more flexible covariance
structures. The most widely used extension is nested logit. The advantage of nested logit is that it relaxes
the classic I1 A assumption and yet has a closed form. Nonetheless it is till afairly rigid model. Nested
logit is not alogit kernel model, athough it can be approximated in the logit kernel structure. In terms of
logit kernd models, the earliest applications were in random parameter logit specifications, which appeared
20 years ago in the papers by Boyd and Mellman (1980) and Cardell and Dunbar (1980). The more
genera form of the modd came about through researchers quest for smooth probability simulators for use
in estimating probit models. McFadden’s 1989 paper on the Method of Simulated Moments, includes a
description of numerous smooth simulators, one of which involved probit with an additive i.i.d. Gumbel
term. Stern (1992) described a similar smulator, which has an additive i.i.d. normd term instead of the
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Gumbel. At the time of these papers, there was a strong desire to retain the pure probit form of the mode.
Hence, the algorithms and specifications were designed to eventually remove the additive “contamination”
element from the modd (for example, McFadden, 1989) or ensure that it did not interfere with the pure
probit specification (for example, Stern, 1992). Bolduc and BenrAkiva (1991)° did not see the need to
remove the added noise, and began experimenting with models that left the Gumbel term in tact, and found
that the models performed well. There have been numerous relatively recent applications and
invedtigations into the model, including Bhat (1997 & 1998), Bolduc, Fortin and Fournier (1996),
Brownstone, Bunch and Train (2000), Brownstone and Train (1999), Goett, Hudson, and Train (2000),
Gondl and Srinivasan (1993), Greene (2000), Mehndiratta and Hansen (1997), Revelt and Train (1998 &
1999), Srinivasan and Mahmassani (2000), and Train (1998). A very important recent contribution is
McFadden and Train's (2000) paper on mixed logit, which both (i) proves that any well-behaved random
utility consistent behavior can be represented as closely as desired with a mixed logit specification, and (ii)
presents easy to implement specification tests for these models.

While logit kernel has strong computational advantages, it, like probit, does not have a closed form solution
and can eadlly lead to high dimendonad integras. The well-known Gaussian Quadrature method of
numerical integration is not computationally feasible for dimensiondlities above 3 or so, and therefore
estimation viasmulation is a key aspect to gpplications of the logit kernel mode. The basic idea behind
smulation is to replace the multifold integra (the probability equations) with easy to compute probability
simulators. Lerman and Manski (1981) introduced this concept and proposed the use of a frequency
smulator to smulate probit probabilities. The frequency smulator was found to have poor computational
properties primarily because it is not smooth (i.e., not continuous and not differentiable). Basically the
frequency smulator maps each draw to avalue of either O or 1, whereas a smooth smulator would map
each draw to a value somewhere between 0 and 1 (and therefore retains more information). The result is
that discontinuous simulators require a prohibitively large number of smulation draws to obtain acceptable
accuracy. In addition, atheoretical advantage of smoothness is that it grestly smplifies asymptotic theory.
For these reasons, there has been alot of research on various smooth simulators (see, for example,
Borsch-Supan and Hagjivassiliou, 1993; McFadden, 1989; Pakes and Pollard, 1989; and Stern, 1992). The
discovery of the GHK smulator provided a smooth simulator for probit, which quickly became the
standard for estimating probit models (see Hajivassiliou and Ruud, 1994). Now there is gresat interest in the
logit kernel smooth simulator because it is conceptudly intuitive, flexible, and relatively easy to program.

With simulation, the types and number of draws that are made from the underlying distribution to calculate
the smulated probabilities are dways important issues. Traditionaly, smple pseudo-random draws (for
example, Monte Carlo) have been used. Bhat (2000) and Train (1999) present an interesting addition to
the econometric smulation literature, which is the use of intelligent drawing mechanisms (in many cases
non-random draws known as Halton sequences). These draws are designed to cover the integration space
in amore uniform way, and therefore can significantly reduce the number of draws required. We employ
this approach for the empirical results presented later in this chapter.

° Later generalized to Ben-Akiva and Bolduc (1996).
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A find point is that we use Maximum Likelihood Estimation (ML) or Maximum Simulated Likelihood
(MSL). An dternative to thisis the Method of Simulated Moments (MSM) proposed by McFadden (1989)
and Pakes and Pollard (1989). MSM is often favored over MSL because a given level of accuracy in
model parameter estimation can be obtained with afairly small number of replication draws. The accuracy
of the MSL methodology critically depends on using a large number of smulation draws because the log-
likelihood function is smulated with a non-negligible downward bias. For severa reasons, we still stick to
the MSL approach. First, MSL requires the computation of the probability of only the chosen alternative,
while MSM needs al choice probabilities. With large choice sets this factor can be quite important.
Second, the objective function associated with MSL is numerically better behaved than the MSM objective
function. Third, with the increase in computational power and the implementation of intelligent drawing
mechanisms, the number of drawsissueis not as critical asit once was.

The Logit Kernel Model

The Discrete Choice Model

Consider the following discrete choice modd. For agivenindividua n, n=1,...,N where N isthe
sample size, and an dternative i, i =1,...,J,, where J, isthe number of aternativesin the choice set C,
of individua N, the model is written as:

j1ifu,3U,, forj=1,..,3,
Yo "1 0 otherwise ’
Uin = xinb +ein !

where y,, indicates the observed choice, and U, isthe utility of dternative i as perceived by individud
n. X, isa (1" K) vector of explanatory variables describing individua n and aternative i, including
aternative-specific dummy variables as well as generic and dternative-specific attributes and their
interactions with the characteristics of individual n. b isa (K~ 1) vector of coefficientsand e, isa
random disturbance. The assumption that the disturbances are i.i.d. Gumbel leads to the tractable, yet
restrictive logit model. The assumption that the disturbances are multivariate normal distributed leads to the
flexible, but computationally demanding probit model. The logit kernel model presented in this chapter isa
hybrid between logit and probit and represents an effort to incorporate the advantages of each.

In amore compact vector form, the discrete choice model can be written as follows:
Yo = Yo Yol
Un:xrp+en ) [2'1]

where y., U, ,and e, are (J,” 1) vectorsand X, isa (J,” K) matrix.
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The Logit Kernel Model with Factor Analytic Form

Model Specification

In the logit kernel modd!, the e,, random utility term is made up of two components: a probit-like
component with a multivariate distribution, and an i.i.d. Gumbe random variate. The probit-like term
captures the interdependencies among the alternatives. We specify these interdependencies using a factor
analytic structure’, which is a flexible specification that includes all known error structures, as we will
show below. It also has the ability of capturing complex covariance structures with relatively few
parameters. This formulation of the logit kernel was originaly presented in the working paper by Ben
Akiva and Bolduc (1996), and this chapter represents a major revision of that paper.

Using the factor anaytic form, the disturbance vector €, is specified as follows:
en = Fan +nn ' [2-2]

where X, isan (M " 1) vector of M multivariate distributed latent factors, F, isa (J,,” M) matrix of
the factor loadings that map the factors to the error vector ( F, includes fixed and/or unknown parameters
and may aso be afunction of covariates), and v, isa (J,” 1) vector of i.i.d. Gumbel random variates.
For estimation, it is desirable to specify the factors such that they are independent, and we therefore
decompose X,, as follows:

x =Tz _, [2-3]

n n

where z , areaset of standard independent factors (often normally distributed), TT ' is the covariance
matrix of X, and T isthe Cholesky factorization of it. The number of factors, M , can be less than, equal
to, or greater than the number of aternatives. To smplify the presentation, we assume that the factors
have standard normal distributions, however, they can follow any number of different distributions, such as
lognormal, uniform, etc.

Substituting Equations [2-2] and [2-3] into Equation [2-1], yidlds.

The Factor Analytic Logit Kernel Specification

U,=Xb+FTz, +n, , [2-4]

cov(U,)=FTT'F,"+(g/nf)l, [2-5]
(whichwedenoteas W, =S, +G,),

where: U, isa(J, 1) vector of utilities;

n

X, isa(J,” K) matrix of explanatory variables;

n

! The Factor Analytic Structure was proposed for probit by McFadden (1984) as a means of reducing the dimensionality of the
integral.
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b isa(K”1) vector of unknown parameters,

F, isa(J,” M) matrix of factor loadings, including fixed and/or unknown
parameters;

T isa(M” M) lower triangular matrix of unknown parameters, where
TT'=Cov(x, =Tz,);

z. isa(M "1 vector of i.i.d. random variables with zero mean and unit variance;
and

n, isa(J,” 1) vector of i.i.d. Gumbel random variables with zero location
parameter and scale equal to m> 0. Thevarianceis g/r‘n2 , Where g isthe
variance of a standard Gumbel (p 2/6).

The unknown parametersin thismodel are m, b , thosein F,, andthosein T . X are observed,
whereas z , and n,, are unobserved.

It isimportant to note that we specify the model in level form (i.e,, U, j =1,...,J,) rather thanin
differenceform(i.e, (U;,- U, ), j =1,...,(J, - 1) ). We do this for interpretation purposes, because it
enables us to parameterize the covariance structure in ways that capture specific (and conceptual)
correlation effects. Nonetheless, it is the difference form that is estimable, and there are multiple level
structures that can represent any unique difference covariance structure. We return to thisissue later in
the chapter.

Response Probabilities

As will become apparent later, a key aspect of the logit kernel mode! isthat if the factors z , are known,
the model corresponds to a multinomid logit formulation:

en( xinb +FinTZ n)

L(ilz,)= (2]

é en(xmb +FiTz,)
i Cq

where L (i [z,,) isthe probability that the choiceis i given z,,,and F is j™ row of the matrix F,,
j=1...J,.

Since the z , isin fact not known, the unconditional choice probability of interest is:

Pi)=QL@lz)nE,lu)dz . [2-7]

where n(z ,1,,) isthejoint density function of z , which, by construction, is a product of standard
univariate normas:
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n@, ) =0f @) -

The advantage of the logit kernel model is that we can naturally estimate P(i) with an unbiased, smooth,
tractable ssimulator, which we compute as.

S 1 g) . d
POy =pa L(lzq) .
d=1
Wherez;j denotes draw d from the distribution of z , thus enabling us to estimate high dimensional
integrals with relative ease.

Findly, notethat if T =0 then the mode reduces to logit.

Identification and Normalization

It is not surprising that the estimation of such models raises identification and normalization issues. There
are two sets of relevant parameters that need to be considered: the vector b and the unrestricted
parameters of the distribution of the disturbance vector e, whichiinclude F,, T ,and m. For the vector
b , identification isidentica to that for amultinomial logit model. Such issues are well understood, and the
reader is referred to Ben-Akiva and Lerman (1985) for details.

The identification of the parameters in error structure is more complex, and will be discussed in detail in
this chapter.

Comments on ldentification of Pure Probit versus Logit Kernel

Recall that the error structure of the logit kernel model consists of a probit-like component and an additive
i.i.d. extreme value term (the Gumbadl). Bolduc (1992), Bunch (1991), Dansie (1985) and others address
identification issues for disturbance parameters in the multinomia probit model. Bunch (1991) presents
clear guiddines for identification (consisting of Order and Rank conditions, which are described bel ow)
and provides examples of identified and unidentified error structures. He also provides a good literature
review of the investigations into probit identification issues. For the most part, the identification guidelines
for pure probit are applicable to the probit-like component of the logit kernel model. However, there are
some differences, which are touched on here, and will be expanded on in the detailed discussion that
follows.

We will see below that by applying the mechanics that are used to determine identification of a Probit
model (Order and Rank) to the logit kernel model, effectively what happens is that the number of
identifying restrictions that were necessary for a pure probit model are aso required for the probit-like
portion of the logit kernel model. However, there are some subtle, yet important, differences. Recall that
one constraint is aways necessary to set the scale of the model. In a pure probit model, thisis done by



setting at |least one of the elements of the covariance structure’ to some positive value (usualy 1). Call this
element that is constrained s o With logit kernel, on the other hand, the scale of the model isset asina
standard logit model by congtraining the m parameter of thei.i.d. Gumbel term. Since the scale of the logit
kernel model is set by m, the normaization of s | isnow aregular identifying restriction in the logit kernel
model. One issue with the normaization of s, for the logit kernel model isthat in order to be able to
trivialy test the hypothesisthat alogit kernel modd is statistically different from a pure logit modd, it is
desirableto set s |, equal to zero so that pure logit is a special case of alogit kernel specification. A
second difference is that while the specific element of the covariance matrix that is used to set the scale in
a probit mode! is arbitrary, the selection of s | isnot necessarily arbitrary in the equivalent logit kernel
model. Thisis due to the structure of the logit kernel model, and will be explained further below (in the
discussion of the ‘positive definiteness’ condition.)

Finally, it turns out that the fact that s |, must be constrained in alogit kernel model is not exactly correct.
In aprobit kernel model (i.e,, with ani.i.d. normal term), itistruethat s , must be constrained. In this
case, there is a perfect trade-off between the multivariate normal term and thei.i.d. normal term.
However, in the logit kernel modd, this perfect trade-off does not exist because of the dight difference
between the Gumbel and Normal distributions. Therefore, there will be an optimal combination of the
Gumbe and Normd distribution, and this effectively allows another parameter to be estimated. This leads
to somewhat surprising results. For example, in a heteroscedastic logit kernel modd a variance term can
be estimated for each of the dternatives, whereas probit, probit kernel, or extreme value logit requires that
one of the variances be constrained. The same holds true for an unrestricted covariance structure.
Nonetheless, the redlity is that without the constraint, the model is nearly singular (i.e., the objective
function is very flat at the optimum), as will be demonstrated in the estimation results that follow. Due to
the near singularity, it is advisable to impose the additional congtraint, and we proceed using this approach
throughout the rest of the discussion.

Overview of Identification

Thefirst step of identification is to determine the model of interest, that is, the disturbance structure that is
apriori assumed to exist. For example, an unrestricted covariance matrix (of utility differences) or various
restricted covariance matrices such as heteroscedasticity or nesting. Once that is determined, there are
three steps to determining the identification and normalization of the hypothesized model. The first two
have to do with identification. For the modd to be identified, both the order condition (necessary) and the
rank condition (sufficient) must hold. The order condition establishes the maximum number of parameters
that can be estimated, which is based on the number of aternativesin the choice set. The rank condition
establishes the actual number of parameters that can be estimated, which is based on the number of
independent equations available. In cases in which the conclusion from the order and rank conditionsis
that additiona restrictions are in order, then a third condition (which we refer to as the positive definiteness
condition) is necessary to verify that the chosen normalization is valid. Recdl that the reason that an
identifying restriction is necessary is that there are an infinite number of solutions (i.e., parameter

8
Technically, the constraint is on the covariance matrix of utility differences.
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estimates) to match the given model structure. The point of an identifying restriction is to establish the
existence of a single unique solution, but not change the underlying mode in any way. The positive
definiteness condition asks the question of whether the models true structure (i.e., the one on which the
rank and order conditions were gpplied) is maintained given the chosen identifying restriction. Thisis not
an important issue for probit, but, as we will see, it has important implications for logit kernel. Each of the
conditions is expanded on below, and we use the heteroscedastic logit kernel model to illustrate each
condition.

The Specification of the Heteroscedastic Logit Kernel Model

9
The heteroscedastic model, assuming a universal choice set (C, =C " n), is written as:

Vector notation: U, =X b +Tz_+n_, (M =J and F, equals the identity matrix 1),
s, 0
e u
<0 s i
T=6 "2 Y33, z, 39,
&80 0 - g( ), 2, 370
§0 0 0 s,p

and, defining s, =(s,)?, the Co\U,) is:

&, +g/nf U
S 0 s,,+g/nf u
w= & 22 U3 9.
e 0 0 . u
é
g O 0 0 s, +g/ntQ
Scalar notation: U, =X b+s.z_+n_ , il C.

Note that for a heteroscedastic model with a universal choice set, the covariance matrix does
not vary across the sample, and so we can drop the subscript n from W, .

We carry the identification conditions through for a binary heteroscedastic model, a three
alternative heteroscedastic model, and a four alternative heteroscedastic model, because the
three models serve well to highlight various aspects of identification and normalization. The
covariance structures for these three models are as follows:

9
Note that our notation for symmetric matricesis to show only the lower triangular portion.

36



&, +g/nt U
J=3: W:g 0 S, +g/nt ﬂ
€ 0 0 Sy +g/nty
&,,+g/nt u
€ / nt U
j=a:w=¢ 9 %2%9 :
g 0 0 S 4+ g/ nf ﬂ
g O 0 0 s,tglnfg

Setting the Location

The general approach to identification of the error structure is to examine the covariance matrix of utility
differences, denoted in the general case as Wn’Di . Taking the differences sets the “location” of the mode,
anecessity for random utility models. The covariance matrix of utility differences for any individual is:

Wn'Di =Cov(DU,)=D,FTT'F,'D;"+D,(g/ mz)IJD]. Y
where D; isthe linear operator that transformsthe J utilitiesinto (J - 1) utility differences taken with
respect tothe j™ aternative. D; isa(J-1)" J matrix that consstsof a (J- 1)" (J - 1) identity

matrix with a column vector of - 1’sinserted asthe j" column. We use the notation W, , to denote the
covariance matrix of utility differences taken with respect to the J™ aternative.

Setting the Location for the Heteroscedastic Model

For the example heteroscedastic models using J as the base, the covariance matrices of utility
differences are as follows:

J=2:D,=[1 -1, Wo=g5 ., +S , +29/nT R,
j=3:p,=5 0 M W, =S s+ 20/nt :
SO 1 -1g, e S33"'9/m2 522+533+29/nfl:|’
él 00 -1@
J=4:D,=0 1 0 -1
€0 0 1 -1§,
& ,,+S 4, +2g/nf a
ng S44"'g/m2 S22"'544'*'29/”12 H
& su,+g/nt S, +g/m’ S 45 +S 4 +29/ 1P Y.
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Order Condition

The first condition is the order condition, which is necessary for identification. When discussing the Order
Condition, it is useful to separate the covariance matrix into that which is constant across the sample
(called the *dternative-specific’ portion) and that which varies across the sample (for example, in the case
of random parameters). The order condition only applies to the aternative-specific portion of the
covariance matrix. It states that amaximum of s=J(J - 1)/2 - 1 dternative-specific parameters are
egimablein W, which is equd to the number of distinct cellsin W, (symmetric) minus 1 to set the scale
(another necessity of random utility models). Therefore:

with 2 afternatives, no dternative-specific covariance terms can be identified;
with 3 alternatives, up to 2 terms can be identified;

with 4 alternatives, up to 5 terms can be identified;

with 5 dternatives, up to 9 terms can be identified;

etc.

When the error structure has parameters that are not alternative-specific, for example, random
parameters, it is possible to estimate morethan S parameters, because there is additional information
derived from the variations of the covariance matrix across individuas. Technicaly, there ill is an order
condition, but the limit is large (related to the size of the sample) and is therefore never alimiting condition.

The Order Condition and the Heteroscedastic Model

The disturbance parameters in the heteroscedastic model are alternative-specific, so the order
condition must hold. Each heteroscedastic model has J +1 unknown parameters: J S, 's and
one M. The order condition then provides the following information regarding identification:

J =2: unknowns={s ,;,S,,,n}; s=0 - 0 variances are identified
J =3: unknowns={s ,; ,S,,,S3,N}; S=2 - upto 2 variances are identified
J =4: unknowns={s ,, ,S,,,S33,S4, M;S=5 - potentially all variances are identified

Note that there are published probit and logit kernel models in the literature that do not meet the order
condition, see, for example, Greene (2000) Table 19.15 and Louviere et a. (2000) Table B.6. While the
logit kernd models in Greene and Louviere do not meet the order condition, these models are nonetheless
barely identified due to the dight difference between the normal and Gumbe distributions (as discussed
earlier). However, the probit model does not have this luxury, and therefore the prabit model reported in
Greeneis not identified (as will be demonstrated in the mode choice application).

While the order condition provides a quick check for identification, it is clearly shown in Bunch (1991) that
the number of parameters that can be estimated is often lessthan S, depending on the covariance
structure postulated. Therefore, the rank condition must aso be checked, which is described next.
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Rank Condition

The rank condition is more restrictive than the order condition, and it is a sufficient condition for
identification. The order condition smply counts cells, and ignores the interna structure of W, . The rank
condition, however, counts the number of linearly independent equations available in W, that can be used
to estimate the parameters of the error structure. Bolduc (1992) and Bunch (1991) describe the mechanics
of programming the rank condition. The basic idea behind determining this count is to examine the
Jacobian matrix, which is equal to the derivatives of the elementsin W, with respect to the unknown
parameters. The number of parameters that can be estimated is equal to the Rank of the Jacobian matrix
minus 1 (to set the scale). These mechanics are demonstrated below with the heteroscedastic example.

The Rank Condition and the Heteroscedastic Model

The first step is to vectorize the unique elements of W, into a column vector (we call this
10
operator vecu):

€, +s 5 +2g/nT U

J =3: vecu(W;) = gc»zz +333+29/nf3
€ sg+g/m 4

&, +s,+29/nf U
é u
+s , + %
J=4: veu(W,) = €27« 29/t
33"'544"'29/”]2[1I

s, +g/nf

C[D>CD)(ﬂ)
oc

By examination, it is clear that we are short an equation in both cases. This is formally
determined by examining the Rank of the Jacobian matrix of vecu(\W,) with respect to each of
the unknown parameters (S,;,...,S ;;,9/nT):

Jacobian ¢l 0 1 2y )
A ¢ can estimate 2 of the parameters,

J=3: matrix of =0 1 1 2Y Rank=3 ® _
€ U must normalize m and ones ;.
veeuW,) @ 0 1 1y
Jacobian ¢ 001 2
i © 101 24 can estimate 3 of the parameters,
J =4: matrix of = € U Rank =4 ® _
€ 01 1 2u must normalize mand ones ;.
vecu(Wo) 8) 001 14
a

So for both of these cases, the scale term m as well as one of the S;;'s must be normalized.

10
Note that there’ s no need to continue with identification for the binary heteroscedastic case, since the order condition resolved
that none of the error parameters are identified.

39



Which s ;; should be fixed? And to what value? This is where the positive definiteness condition comes
into play, and it turns out that the normalizations for logit kernel models are not always arbitrary or
intuitive.

Positive Definiteness

When the conclusion from the order and rank conditions is that further identifying restrictions
(normalizations) are required, the positive definiteness condition is used to determine the set of acceptable
normalizations. Conceptually, the need for the positive definiteness condition is as follows. First note that
the reason for the additional normalization is that there are infinite possible solutions that result in the
hypothesized covariance structure. The normalization is necessary to establish the existence of a unique
solution, but it does not change the underlying mode structure (i.e., the covariance matrix of utility
differences) in any way. The positive definiteness condition is necessary to verify that the chosen
normalization isvalid, i.e., that the remaining parameters that are estimated are able to replicate the
underlying mode structure. It turns out that with logit kernel models, there can be seemingly obvious
normalizations that are not valid, because the structure of the model prevents the underlying covariance
matrix of utility differences from being recovered.

To work through the details of the positive definiteness condition, we rephrase the above discussion as
follows. There are two overriding issues behind the positive definiteness condition:

Statement 1: There are infinite possible normalizations that can be imposed to identify the model.
However, note that dl vaid normaizations for a particular specification will result inidentica W, , thet is,
{ W, from normalization 1} ={ W, from normalization 2}. For example, with this relationship, one can
convert the estimated parameters from a particular normalization (say s ;; = 0) to the parameters that will
be estimated if a different normdization (say s, =1) isimposed (as long as both normdizations are
vaid).

Statement 2: Thelogit kernel covariance matrix is W, =S, +G, , where S, = (F, T)(F, T)¢ (Equation
[2-5]). Therefore, by construction, S, is necessarily positive semi-definite (*semi’ because F,T can equal
zero).

Given these two issues, any vaid normaization must be such that both of the following conditions hold for
al observations:

l. \/\/:'D =W, ® S,':D +GL“’ =W, (by definition of a normaliztion).

The covariance matrix of utility differences of the normalized model (denoted by N )
equals the covariance matrix of utility differences of the non-normalized (theoretical)
modd.

. SV is positive semi-definite (by construction).

n
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If the normaization is such that both Conditions | and |1 cannot be met, the parameter estimates will be
inconsistent and result in aloss of fit. It turns out that for logit kernel, these conditions can impose
restrictions on the feasible set of normalizations, as we describe below.

We have already stated that Condition Il necessarily holds due to the construction of the modd.

Therefore, the issue is whether the imposed normdization is such that Condition | can be met, given the
regtriction that S is positive semi-definite. Problems can arise with logit kernel models due to the additive
i.i.d. Gumbel portion of the covariance structure, G, . Because of G, there can be normalizations for
which satisfying Condition | requires a negative definite S . However, this conflicts with Condition I, and
so any such normalization is not vaid. Note that this issue actually arises with any model structure that
includes an i.i.d. disturbance term along with a parameterized disturbance, for example, a probit kernel
model.

Positive Definiteness and the Heteroscedastic Model

Looking at the heteroscedastic case, we will use the three alternative model as an example. It is
useful in the analysis to deal directly with the estimated (i.e., scaled) parameters, so we
introduce the notation S, = (M8, )?. Say we impose the normalization that the third
heteroscedastic term, S ,,, is constrained to some fixed value we denote as S f’? . Condition |
can then be written as:

s+ +20)nf
e

;«S‘ll+S‘33+2g)/rn2 l;l
sN+o)/mf  h+si+2g)/nty &

u
u= . . . a
g é (333"'9)/”]2 (Sz+533+29)/mzfl

where the matrix on the left represents the normalized model (S N=(mgs iN)z) and the matrix
on the right represents the theoretical (non-normalized) model. This relationship states that
when the normalization is imposed, the remaining parameters in the normalized model will
adjust such that the theoretical (or true) covariance matrix of utility differences is recovered. It
also provides us with three equations:

sy +0)/mf=(s5+0)/nt

[2-9]
(S +S gy +29)/nf =(Sy, +S 5 +29)/nT , and [2-9]
(Sp+Sy +29)/mf =(S , +S 5 +20) /1T . [2-10]

Condition Il states that S™ must be positive semi-definite, where:

z . N <

& i 1
N_C - N Uy

< o _

&0 0 sgxH
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This matrix is positive semi-definite if and only if the diagonal entries are non-negative and r‘rﬁ
is strictly positive, or:

g >0, [2-11]
sh30, [2-12]
s530,and [2-13]
Si30. [2-14]

The positive definiteness condition requires that all valid normalizations satisfy the restrictions
stated by Equations [2-8] to [2-14]. The question is, what values of S;\f' guarantee that these
relationships hold?

To derive the restrictions on stf , we first use Condition | (Equations [2-8] to [2-10]) to develop
equations for the unknown parameters of the normalized model (nf,, s, and sJ}) as
functions of the normalized parameter S f’\f' and the theoretical parameters

(n?, S,,, S, and s;), which leads to:

mf, =nf(s i +9)/Cx+0) . [2-15]
s'lNl = ((3.11"' g)sif’;l +(Syy- 5.33)9)/(3'33 + g) , and [2-16]
S.2‘2:((5'22 +9)S § +(S - 5'33)9)/(5"%"'9) : [2-17]

Equations [2-11] to [2-14] impose restrictions on the parameters of the normalized model, and
so we can combine them with Equations [2-15] to [2-17], which results in the following set of
restrictions:

Sy30, (Eq. [2-14]) [2-18]
nf(s Rt g)/(s‘33 +g)>0, (Egs. [2-11] & [2-15]) [2-19]
(u+asi+61u-52)9)/(S5+9)3 0, ad  (Egs [2-12] & [2-16]) [2-20]
(52+9)sk+6E2-5:)9)/[sx+9)2 0. (Eos. [2-13] & [2-17))  [2-21]

The other information we have is that S is positive semi-definite (by construction), and
therefore:

m>0,s,30,5,,%0,ands ;2 0. [2-22]

So going back to restrictions [2-18]-[2-21], the first two restrictions are trivial: Equation [2-18]
just states that the normalization has to be non-negative; and given Equations [2-18] and [2-22]
, Equation [2-19] will always be satisfied. Equations [2-20] and [2-21] are where it gets
interesting, because solving for S# leads to the following restrictions on the normalization:
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s i (s3<3 S )%g+s'”) ,i=1,2. [2-23]

(S g isthe heteroscedastic term that is fixed.)

What does this mean? Note that as long as alternative 3 is the minimum variance alternative,
the right hand side of Equation [2-23] is negative, and so the restriction is satisfied for any

S & 3 0. However, when alternative 3 is not the minimum variance alternative, S §; must be set
“large enough” (and certainly above zero) such that Equation [2-23] is satisfied. This latter
approach to normalization is not particularly practical since the S ; are unknown (how large is
large enough?), and it has the drawback that MNL is not a case nested within the logit kernel
specification. Therefore, the following normalization is recommended:

The preferred normalization for the heteroscedastic logit kernel model is to constrain the
heteroscedastic term of the minimum variance alternative to zero.

A method for implementing this normalization is described later in the section on
heteroscedastic logit kernel models.

Positive Definiteness and a Probit Model

What about the positive definiteness condition for pure probit? Pure probit models aso must satisfy a
positive definiteness condition, but it turns out that these do not impose any problematic restrictions on the
normalization. With pure probit, there is obviousy no Gumbel term, so Condition | can be written as

S,':D =S, - Condition Il is similar to that for logit kernel, except that S| must now be positive definite
(sinceit cannot equal zero). Since S, , iswell-behaved (by construction), Condition | states that SSD will
aso be well-behaved, and, therefore, sowill S! . The result is that the positive definiteness condition
automatically holds for normaizations that are intuitively applied to probit.

Positive Definiteness and a Probit Heteroscedastic Model

This can be demonstrated for the heteroscedastic pure probit case, Condition | is:

qsll+s )/nﬁ l;lzé(s'll+s'33)/ﬁf l;I
§ EM/f (sh+sM/ifg & Su)/ff  (Sn+sy)/ifa

where M is the scale of the probit mode (i.e., not the traditional Gumbel m).

Solving for the unknown parameters from the normalized model:

msff/s33 '

S11 :Snsff/sxa ,and
N _ .. N /-
S2» =SS fr/533 :

Condition Il requires:
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7 >0,
s) >0,
s»>0,and
sy >0.

Given that the theoretical S is well behaved (i.e., all theoretical variances and scale are
strictly positive), it is clear that any S f';' >0 will result in Conditions | and Il being satisfied. So,
the normalization is arbitrary, and the standard practice of normalizing any one of the terms to
1is valid.

Examination of the normalization unrestricted probit and logit kernel models are provided in Appendix A.
The heteroscedastic and unrestricted covariance matrix examples illustrate the nature of the problem. The
issue arises due to the manner in which the normalized parameter estimates adjust to replicate the true
covariance structure. With probit, the parameters shift in a smple multiplicative manner. However, with
logit kernel, the parameters shift in an additive manner, and this can lead to infeasible * negative’ variances
and afactor analytic term that is not positive definite.

The brief summary of identification is that the order and rank conditions need to be applied to verify that
any estimated modd isidentified, and the positive definiteness condition needs to be applied to verify that a
particular normdization is valid. It is critical to examine identification on a case-by-case basis, which is
how we will proceed in the remainder of the chapter. There is aso an empirical issue concerning
identification, which is whether or not the data provide enough information to estimate any given
theoretically identified structure. Thisis the usud multicollinearity problem, and it arises when there are too
many parameters in the error structure and therefore the Hessian is nearly singular.

Special Cases
Many interesting cases can be embedded in the general factor anaytic logit kernel specification presented
in Equation [2-4]. We will cover the following specia casesin this section:

Heteroscedastic — a summary and generaization of the discussion above.
Nested and Cross-nested — analogous to nested and cross-nested logit.
Error Components — a generalization of heteroscedastic and nested structures.

Factor Analytic — afurther generdization in which parametersin F, are also estimated.

General Auto-Regressive — particularly useful for large choice sets.

Random parameters — where most of the current applications of logit kernd in the literature are
focused.

Thisis not meant to be an exhaustive list. There are certainly other special cases of the logit kernel modd,
some of which are presented in papers listed in the references. The objective of this section is to show the



flexibility of logit kernel, to provide specific examples of specification and identification, and to establish
rules for identification and normalization for some of the most common special cases.

Heteroscedastic

The heteroscedastic model was presented above. The scalar notation form of the model is repeated here
for convenience:

Uin:Xinb-l-SiZin +nin ' IT Cn '
Identification

Identification was already discussed above for J =2, 3, and 4. These results can be straightforwardly
generaized to the following:

Identification
J =2 none of the heteroscedastic variances can be identified.

J 33 J-1 of the heteroscedastic variances can be identified.

Normalization

For J 32 3, a normdization must be imposed on one of the variance terms, denote this as
S i =s f’? where s i is the true, albeit unknown, variance term that is fixed to the value s # )

This normalization is not arbitrary, and must meet the following restriction:

S.fIFIS (Sjj - Sii)%+sii) ,i=1,...,J3 .

This restriction shows that the natural tendency to normalize an arbitrary heteroscedastic term to zero is
incorrect. If the aternative does not happen to be the minimum variance dternative, the parameter
estimates will be inconsistent, there can be a significant loss of fit (as demonstrated in the application
section), and it can lead to the incorrect conclusion that the model is homoscedastic. Thisis an important
issue, which, asfar as we can tell, isignored in the literature. It appears that arbitrary normalizations are
being made for moddls of this form (see, for example Gonll and Srinivasan, 1993, and Greene, 2000, Table
19.15). Therefore, there is a chance that a non-minimum variance was normalized to zero, which would
mean that the model is misspecified. It isimportant to note that it is the addition of thei.i.d. disturbance
that causes the identification problem. Therefore, heteroscedastic pure probit models as well asthe
heteroscedastic extreme value models (see, for example, Bhat, 1995, and Steckel and VVanhonacker, 1988)
do not exhibit this property.

Idedlly, we would like to impose a normalization such that MNL is a specia case of the model. Therefore,
the best normalization is to fix the minimum variance aternative to zero. However, thereisin practice no
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prior knowledge of the minimum variance adternative. A brute force solution isto estimate J versions of
the model, each with a different heterascedastic term normalized; the mode with the best fit is the one
with the correct normalization. Thisis obvioudy cumbersome as well as time consuming. Alternatively,
one can estimate the unidentified model with al J heteroscedastic terms. Although this model is not
identified, it will pseudo-converge to a point that reflects the true covariance structure of the model. The
heteroscedastic term with minimum estimated variance in the unidentified model is the minimum variance
aternative, thus eliminating the need to estimate J different models. Examples of this method are
provided in the applications section.

Nesting & Cross-Nesting Error Structures

Nesting and cross-nesting logit kernd is another important specia case, and is analogous to nested and
cross-nested logit. The nested logit kernel modd is specified as follows:

U,=Xb+FTz, +n,_,

where: z, is(M”" 1), M isthe number of nests, and one factor is defined for each nest.

n

_11 ifalternativej isamember of nest m

F ois(J." M), f = .
(" M) i %0 otherwise

T is(M~ M) diagond, which contains the standard deviation of each factor.

Inastrictly hierarchical nesting structure, the nests do not overlap, and F F, ' isblock diagond. Ina
cross-nested structure, the alternatives can belong to more than one group.

Identification

Asusud, the order and rank conditions are checked for identification. The order condition states that at
most J(J - 1)/2- 1 nesting parameters can be identified. However, the rank condition leads to further
restrictions as described below.

Models with 2 Nests

The summary of identification for a 2 nest structure is that only 1 of the nesting parametersis identified.
Furthermore, the normalization of the nesting parameter is arbitrary. Thisis best shown by example. Take
a5 dternative case (with universal choice set) in which the first 2 aternatives belong to one nest, and the
last 3 dternatives belong to a different nest. The model is written as:

U, =..+sz,,+n, él Ou
U, =..+sz,, +n,, & OH & 00
Uy =S 2,, N, , where F=8 10 andT:@O1 e
U, = ..+S Z, +n,, g) 13 € 2u
Ug, = ... +8 2, N, g) 18



We denote this specification as 1, 1, 2, 2, 2 (a shorthand notation of the matrix F ). The covariance matrix
of utility differences (with aternative 5 as the base) is as follows:

&, +s,, +2g/nf u
\N:gsn"'szz"’g/m2 S +S, +2g/nT 3
Dg g/nf g/ nf 2g/nf 3

é g/nf g/ nt g/nmt  2g/nfg

It can be seen from this matrix that only thesum (s, +S ,,) can beidentified. Thisis verified by the rank
condition as follows:

&,,+s,,+2g/nfU 6L 1 2

U . & U

AS ., +S,,+g/n?’ Jacobian 1 1 1
vecu(W,)= €1 72 9/m g =€ U ® RANK=2

e g/n? u matrix € 0 10

é U & ]

6 2g/nf g @0 0 2

® can estimate 1 of the parameters; must normalize m and one's ;; .

Furthermore, unlike the heteroscedastic logit kernel model, either one of the variance terms can be
normalized to zero (i.e., the normdization is arbitrary). This can be seen intuitively by noticing that only the
sum (S, +S,,) appearsin W, and so it is dways this sum that is estimated regardless of which term is
set to zero. This can also be verified via the positive definiteness condition, as follows. Say we impose the
normalization s J, = 0. Condition | leads to the relationships mf =t and s ;; =(S,, +S,,) . Condition
Il statesthat SN must be positive semi-definite, where:

s 3
és‘ll\ll S.H U 1

s"=éop 0 O ux —-
go 0 00 ﬂ U
€o o o0 o o

A matrix is positive semi-definite if al of its eigenvalues are non-negative. The eigenvalues for S™ shown
aboveare: 251/ mf, 0, 0, O, 0. We know from Condition | that nf >0 and s} 3 0, which means
2s )/ 3 0, S" ispositive semi-definite, and the normaization s ), =0 isvaid. Similarly, it can be
shown that the normalization s J} =0 isaso valid.,

Whileit is not possible to estimate both variance parameters of the 1, 1, 2, 2, 2 structure, the following
structures are dl identified and result in identical covariance structures (i.e., identical models):

{1,1,0,00}={00222}={11222withs,=s, }.
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These results straightforwardly extend to al two nest structures regardless of the number of alternatives
(aslong as at least one of the nests has 2 or more alternatives).

Models with Three or More Nests

The summary of identification for models with 3 or more nestsis that all of the nesting parameters are
identified. To show this, we will again look at a5 aternative modd, this time imposing a 3 nest structure
1,123, 3):

U, =..+s.2, +n,, él 0 Ou
U, =..+S 2, +N,. & o o &, 0 0d
U =S Z, Ny, where F=€ 1 OL}andT:gO S, OH.
U, = ..+SZ, N, D 0 1 g0 0 s,
Ug, = ...+S Z,, g, & 0 1Y
The covariance matrix of utility differencesis:
éesll+sxg+29/mz 3
WD:§S“+S33+glmz S, +S 5 +2g/nf 2 G
g S, +g/nf Sy+g/nt s, +s,+2g/m g
é g/nf g/nf g/ nf 2g/ntQ

A check of the rank condition verifies that al three variance parameters are identified:

€, +S 5 +2g/nfU éL 0 1 2
gsll+sga+g/ng gl 01 13
€ s, +g/nt U Jacobian €0 0 1 1u
veecuW,)=¢& % g a ® . =a 0 ® RANK=4
& ,, +S 4, +29/ Nty matrix 0 1 1 2;
e g/ nt u € 0 0 10
e u é U
& 2g/nt g & 0 0 2§

® can estimate 3 of the parameters; only need to normalize m.

Itisan interesting result that 1, 1, O, 2, 2 structure resuits in both variance parameters being identified (by
virtue of having a 3 nest structure) whereas only one parameter of the 1, 1, 2, 2, 2 structure is identified.

Conceptually, the number of estimable parameters can be thought of in terms of the number of differences
and number of covariancesthat are left in the utility differences. In atwo nest structure, only one
difference remains and no covariances and therefore one parameter is estimable. Whereas in athree nest
structure, there are two differences, plus the covariance between these two differences, and so three
parameters are estimable.

48



This finding can be extended to any model with 3 or more nests (where ‘nests' can have only 1
aternative, aslong as at least one nest has 2 or more aternatives) as follows. Without loss of generdlity,
assume that the base alternative is a member of a nest with 2 or more aternatives (as in the example
above). Define m, as the group to which the base aternative belongs, and s ,, as the variance associated
with this base. Recall that M is the number of nests. The covariance matrix of utility differences has the
following eements:

On the diagond:

S, +S,,+2g/nt " il m,, M-1 equations,
[2-24]

2g/nt 1 equation. [2-25]

On the off-diagond:

S tg/nt, 1 equation, [2-26]

g/nt, irrdlevant: a dependent equation,

S, +S,,+g/nt forsomeil m, irrelevant: adependent equation.

Equations [ 2-24] through [2-26] provide identification for al nesting parameters, and the remaining
equations are dependent. In the two-nest case, Equation [2-26] does not exist, and thusis an equation
short of identification.

Cross-Nested Models

There are no genera rules for identification and normalization of cross-nested structures, and one hasto
check the rank condition on a case-by-case basis. For example, in the five dternative case in which the
third dternative belongs to both nests (1, 1, 1-2, 2, 2), the (non-differenced) covariance matrix is:

@114'9/""'2 U
g S, s,+g/nt ﬂ
er Sll S]J. Sll-I-SZZ-i_g/rnz L:J
& 0 0 S s +g/nf ;
§ 0 0 S22 S, Sptg/my

A check of the order and rank conditions would find that both of the parametersin this cross-nested
structure are identified. However, note that the cross-nesting specification can have unintended
consequences on the covariance matrix. For example, in the (1, 1, 1-2, 2, 2) specification shown above, the
third aternative is forced to have the highest variance. There are numerous possible solutions. Oneisto
add a set of heteroscedastic terms, another isto add factors such that al the alternative-specific variances
are identical as with the following specification:
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80 0 0 0 0 s,j
The covariance matrix of utility differences for this structure is as follows:
€25, + 25, +2g/ nf u
V\/D232511+522+g/r’n2 2s,,+ %, +2g/nf 2 H
g 2s,,+g/nf 25, +g/nt %, +2g/m 3
8 s,+g/nf s, +g/nt sutg/nt  2s,+2g/nfg

A check of the rank condition verifies that both variance parameters are identified for this specification.

€2, +2%,+2g/nfu € 2 20
é a & a
a8 25,+s,+g/nt g 2 11
€ 2,+g/nf U Jacobian & 0 14
vecu(W,) = é n*d a . =a 0 ® RANK=3
& 2,+2g/nt matrix & 0 2
¢ s +g/nt U é 0 1u
e u U
8 2s,+2g/nt e 0 29

® can estimate 2 of the parameters, only need to normalize m.

Extensions to Nested Models

There are various complexities that can be introduced to the nesting structure, including multi-level nests,
cross-nested structures with multiple dimensions, and unknown parameters in the loading matrix (F ).
While we have investigated various specia cases of these extended models, we have not yet derived
genera rules for identification. We recommend that identification be performed automatically on a case-
by-case basis by programming the rank and order conditions into the estimation program.

Error Components

The error component formulation is a generalization that includes the heteroscedagtic, nested, and cross-
nested structures. The mode is specified as follows:

U,=Xb+FTz +n,,
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where F,,z,,and T aredefined asin the general case, and F, isamatrix of fixed factor loadings equal
toOor 1. If T isdiagona (asit often is), then the disturbances in scalar form are:

M
o S
ein=a fir’msmzrm +nin1 II Cn ’
m=1
where:

11 ifthem" element of z, appliesto alternativei for individual n,
}0 otherwise.

The number of factors can be less than, equal to, or greater than the number of alternatives.

Identification

The order condition statesthat upto J(J - 1)/2- 1 parametersin T areidentified. However, it is
always necessary to check the rank condition for the particular specification and the positive definiteness
condition for vaid normalizations. Examples were provided above for the specia cases of heteroscedastic,
nesting, and cross-nesting specifications. Note that the rank condition should always be checked when any
combination of nesting, cross-nesting, and heteroscedasticity are applied. That is, the identification rules
cannot be independently applied for combinations.

Factor Analytic

The Factor Analytic specification is a further generdization in which the F, matrix contains unknown
parameters. The model iswritten asin the general case:

U,=Xb+FTz, +n,.

If T isdiagonal, the disturbances can be written in scalar form as follows:

M
o A
ein =a fimnsmzrm +nin1 II Cn '

m=1

where both the f, , ’sand s ’s are unknown parameters.

Identification

Thisisavery broad class of models. Therefore, it is difficult to go beyond the rank and order
generalizations of identification. However, note that some constraints must beimposedon F, and T in
order to achieve identification. For aternative-specific error structures, the minimum number of necessary
constraints can be determined from the order condition: amaximum of J(J - 1)/2- 1 parameters can be
estimated and thereareup to M (J +1) +1 unknown parameters (M in T diagond, JM in F,, plusthe
scaleterm m). Once the order condition is met, the rank condition needs to be checked on a case-by-case
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bass. Findly, it must be verified that any imposed normalization satisfies the positive definiteness
condition.

General Autoregressive Process

A fully unrestricted error correlation structure in models with large choice sets is problematic as the
dimension of theintegral is on the order of the number of dternatives and the number of parameters
grows quadratically with the number of alternatives. A generalized autoregressive framework is attractive
in these situations, because it alows one to capture fairly general error correlation structures using
parsimonious parametric specifications. The key advantage of the method is that the number of
parameters in the error structure grows linearly with the size of the choice set.

The disturbances )(n = (x'1n Y i) " of afirst-order generalized autoregressive process [GAR(1)] is
defined as follows:

X, =rWx +Tz_, z,~N(O,[l,), [2-27]

where W, isa (J° J) matrix of weights w; , describing the influence of each X in €rror upon the others,
r isan unknown parameter, and T,z , alows for heteroscedastic disturbances, where T, is (J,,” J,))
diagona (the subscript n isincluded to alow for different sized choice sets). Using a genera notation, we
write W, as:

ijn n

: jti and w;, =0 " i=j, [2-28]

1j,n J.

[¢} *
\Nik,n

k=1

where V\{*]-' , Isafunction of unknown parameters and observable explanatory variables, which describe

the correlation structure in effect. Solving for Xn in Equation [2-27] and incorporating it into Equation [2-4]

, leads to alogit kernd form of the GAR[1] specification:
U =Xb+FTz +n_, where F =(1 - rW,) ™.

The normdization applied in Equation [2-28] ensures that the processis stable for values of r inthe
(- 1Y) interval. Theinterpretation and the sign of r , usudly referred to as the correlation coefficient,
depend on the definition of proximity embodied in V\{; .

In practice, the parametersin W in Could be estimated. However, there are important special casesin

which they are fixed. For example, spatia studies often use spatial autoregressive of order 1 [SAR(1)]
error processes, which define the contiguity structure through a Boolean contiguity matrix. In this case,
w, =1if i and j arecontiguousand W, =0 otherwise. For this specification, a r >0 impliesthat

errors of the same sign are grouped together. A dightly more complex specification, which requires

1 - . . . . .
X, hasadlightly different interpretation than the X | used elsewhere in the paper.
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estimation of asingle parameter q , isto set V\{*j =(d; )", in which the distance d; playstheroleof a
contiguity or proximity measure between pairs of aternatives. For examples of SAR(1) see Anselin
(1989), and Cliff and Ord (1981). For an application of SAR(1) processes in economics, see Case (1991).
Bolduc, Fortin, and Fournier (1996) use an SAR(1) process to estimate a logit kernel model with 18
aternatives.

For more details on GAR(1), including a discussion on identification issues, see Bolduc (1992).

Random Parameters
The MNL formulation with normally distributed random taste parameters can be written as.

U,=X,b,+n, , where b, ~N(b,S,).

b, isa K -dimensiona random normal vector with mean vector b and covariance matrix S, . Replacing
b, with the equivadent relationship: b, =b +Tz_, where T isthe lower triangular Cholesky matrix such
that TT'=S, , leadsto agenera factor anaytic logit kernel specification where F, = X :

U,=Xb+XTz, +n, .

The parameters that need to be estimated in thismodel are b and thosepresentin T . T isusudly
specified as diagonal, but it does not have to be (see, for example, Train, 1998, and the gpplication
presented in Chapter 4). Independently distributed parameters are probably a questionable assumption
when variables are closely related, for example in-vehicle and out-of-vehicle travel time.” Also, note that
the distribution does not have to be normal. For example, parameters with sign constraints should be
specified with alognormal distribution. See the telephone case study presented later for an example of a
model with alognormally distributed b, parameter.

Identification

For identification of random parameter models, it is useful to separate the random parameters into two
groups:. those that are applied to alternative-specific constants and those applied to variables that vary
across the sample.

Alter native-specific constants

When dternative-specific zero/one dummy variables have randomly distributed parameters, thisis
identical to the heteroscedastic, nested, and error component structures. In such cases, the order and
rank conditions as discussed earlier hold.

Variables that include variation across the sample

12

Note that if a subset of the covariances are estimated, then one has to be careful about the way the structural zeros are imposed
on the Cholesky. In order for the structure of the Cholesky T (i.e., the location of the structural zeros) to be transferred to the
covariance structure TT’, the structural zeros must be in the left-most cells of each row in the Cholesky. See Appendix B for more
discussion.
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As pointed out in the generd discussion on identification, the order condition does not hold for the
portion of the covariance matrix that varies across the sample. Rather, as many parameters as the
data will support (without running into multicollinearity problems) can be estimated.

Continuous Attributes of the Alter natives

When random parameters are specified for continuous attributes of the aternatives, there are no
identification issues per se. Datawilling, the full covariance structure (i.e., variances for each
parameter as well as covariances across parameters) can be estimated.

Categorical Attributes of the Alternatives

An interesting and unintuitive identification issue arises when categorical variables” are specified with
independently distributed random parameters. Say there are M categories for a variable. Then there
istheoretically a b, and s, for each category m, m=1,...,M . Itiswell known that for the
systematic terms (the b ,’s), only (M - 1) b_’scan beidentified and therefore a base must be
arbitrarily selected. However, thisis not necessarily true for the disturbance terms. To do the analysis,
the rank condition comes into play. Identification of the S’ s can be thought of as identification for a
nested structure (think of it as examining the covariance structure for a particular individud).
Therefore, if there are only 2 categories, then only one random parameter is identified and the
normalization is arbitrary; if there are 3 or more categories, then arandom parameter for each of the
categoriesisidentified. The key here being that, unlike the systematic portion of the utility function, it
isincorrect to set one of the s ;' s as a base when there are 3 or more categories. Unlike the
identification analysis for a nested structure, the number of aternatives J does not impact the number
of s ,’sthat can be estimated, because of the variation across observations. Note that this analysis
appliesfor asingle categoricd variable, and it is not immediately apparent that the conclusion
trandates to the case when random parameters are specified for multiple categorical variablesin the
model. The issue of identification for categorical variablesis not addressed in the literature, see, for
example, Goett, Hudson, and Train (2000), who include random parameters on several categorical
variables in their empirica results.

When covariances are estimated (as they probably should be), then afull set of variances and
covariances can be estimated for the M - 1 b ’sestimated in the systematic utility.

Characteristics of the Decision-maker

If arandom parameter is placed on avariable that is a characteristic of the decision-maker (for
example, years employed), it necessarily must be interacted with an aternative-specific variable
(otherwise it will cancel out when the differences are taken). The normalization or such parameters
then depends on the type of variable with which it interacts. If it interacts with alternative-specific
dummy variables, then the heteroscedastic rules apply (i.e., J - 1 variance terms can be estimated,

v An example of a categorical variable in a housing choice context is X={street parking only, reserved parking space in a lot,
private garage} , where each alternative has exactly one of the possible X' s associated with it.



and the minimum variance term must be constrained to zero). If it interacts with nest-specific
constants, then the rules for nested error structures apply, etc. Furthermore, we suspect that if the
characteritic is a categorical variable (for example, low income, medium income, high income), then
the rules we presented for categorica attributes aso apply (although this hasn’t been verified).

Identification of Lognormally Distributed Parameters

Our application of the Order and Rank conditions for identification assume that the disturbance
component of the utility can be separated from the systematic portion of the utility. With lognormally
distributed parameters, the mean and variance of the distribution are a function of both of the
disturbance parameters and therefore this separability does not exist. While the identification rules
described above cannot be strictly applied, they provide guidelines for identification. And, as aways,
empirica tests such as examining the Hessian should aso be applied.

Aslong as the identification restrictions described above are imposed, the number of random parameters
that can be identified is dependent on the data itself in terms of the variation and the collinearity present in
the explanatory variables. Therefore, empirical methods are used to verify identification of random
parameter models, for example, verifying that the Hessian is non-singular at the convergence point. An
issue with simulation is that identification issues often do not present themselves empirically unless alarge
number of draws are used. Therefore, other useful methods are to constrain one or more parameters and
observe whether the likelihood changes, or to test the impact of different starting values. Also, it is
particularly important in random parameter models to verify stability of parameter estimates as the number
of draws increases.

McFadden and Train (2000) note the inherent difficulty of identifying the factor structure for random
parameter models, because many different factor combinations will fit the data approximately as well.

Parameter Estimation

We now describe the method that we use to estimate the joint vector of parametersd = (b 'y ')', where
b isthe vector of unknown parameters in the systematic portion of the utility and y  is the vector of
unknown parameters in the error structure. For example, in the heteroscedastic model, only the
aternative-specific standard deviationsareincluded in y . In the GAR(1) version based on a Boolean
contiguity matrix, the same standard deviations are estimated in additionto r (the correlation coefficient).
The factor analytic and the random parameter structures can potentially have a very large number of
unknown parameters.

The gpproach isto employ probability smulators within a maximum likelihood framework, which leads to
Maximum Simulated Likelihood (MSL). The application of this method is straightforward and provides
great flexibility in terms of the structure of the covariance matrix.

Maximum Likelihood
The log-likelihood of the sampleis:
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L(d):ﬁ InP(i, | d) .

n=1
where P(i,, |d) isthe probability associated with the choice made by individua n. The score vector is

Ld)_§ 1 1P(,ld)
1 &PG1d) fd

Inserting the probability equations for the logit kerne model (Equations [2-6] and [2-7]) |eads to the score
for the logit kernd modd:
‘ITL(d)ZS‘ 1 finL(i,|d,z)

T T U

niz,l,)dz . [2-29]

Note that we also use the relationship TX/f1q =X (In(X)/1q) in Equation [2-29] in order to make the
derivativetractable: InL(i_|d,C.)=X, b+F Tz -Ind e"°" " whichiseasy to differentiate.

ic,
Each factor z introduces a dimension to the integral. Unless the dimension of z issmdl (£ 3), the
Maximum Likelihood (ML) estimator just described cannot be computed in a reasonable amount of time.
For modelswith z of larger dimension, we use the Maximum Simulated Likelihood (MSL) methodol ogy,
described next.

Maximum Simulated Likelihood
The response probability for dternative i is replaced with the unbiased, smooth, tractable simulator:

P( |d):%§__L(i 1d,z) , [2-30]

where zr? denotesdraw d from the distribution of z,, (each draw consistsof M elements). Thus, the
integral is replaced with an average of values of the function computed at discrete points. There has been
alot of research concerning how best to generate the set of discrete points (see Bhat, 2000, for a
summary and references). The most straightforward approach is to use pseudo-random sequences.
However, variance reduction techniques (for example, antithetic draws) and quas-random approaches
(for example, the Halton draws, which are used in the empirica resultsin this chapter) have been found to
cover the dimension space more evenly and thus are more efficient.

Incorporating the smulated probability, the smulated log-likelihood is then:
~ N ~
L(d)=& InP(i,|d) , [2-31]
n=1

and the smulated scoreis
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[2-32]

A well-known result previoudy obtained in Borsch-Supan and Hajivassiliou (1993), among others, indicates
that the log-likelihood function, athough condstent, is smulated with a downward bias for finite number of
draws. The issue isthat while the probability smulator [2-30] is unbiased, the log-simulated-likelihood
[2-31] is biased due to the log transformation. This can be seen by Jensen’s inequality and the concavity of
the log function. It can also be seen by taking a second degree Taylor's expansion of In(IS(D) around

P(i) , which gives:

N . 1 - .
In(P(l))»In(P(|))+%(P(|)- P(i))

1
2P(i)*

(P()- P()*
Taking the expected value of this relationship implies that:

[(d)- L(d)»-%EO. [2-33]

This suggests that in order to minimize the bias in smulating the log-likelihood function, it isimportant to
simulate the probabilities with good precision. The precision increases with the number of draws, as well
as with the use of efficient methods to generate the draws. The number of draws necessary to sufficiently
remove the bias cannot be determined a priori; it depends on the type of draws, the model specification,
and the data.

Applications

In this section, we consider four applications. two based on synthetic data and two on real data. The first
sample concerns a hypothetical choice situation among three aternatives; the focus is on the parameter
identification issues of heteroscedastic models. The second sample, aso using synthetic data, has 5
aternatives and focuses on identification issues of categorical variables with random parameter. The third
application uses a mode choice dataset that is used for logit kernel models that appear in two recent
textbooks (Greene, 2000, and Louviere, Hensher, and Swait, 2000). We replicate the models presented in
the texts, and use them to highlight practical issuesthat arise in estimating logit kernel models. The fourth
gpplication is based on a survey collected to predict residential telephone demand. We estimate several
error structures for the telephone data, including heteroscedasticity, nesting, cross-nesting, and random
parameter, and highlight many of the important identification and estimation issues of logit kernel models.
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Estimation Notes & Practical Issues

Optimization Algorithm

While the likelihood function for linear in the parameters logit models is strictly concave, thisis not true for
logit kernel models (note that it is also not true for the nested logit model). Furthermore, the smple Newton
methods that are used for MNL estimation tend to lose their robustness when the optimization function is
not concave. Therefore, modified Newton methods, which address non-concavity with techniques such as
trust regions, should be used for logit kernel models. For details on these methods, see Dennis and
Schnabel (1983). In the applications presented in this chapter, we use the DUM AH routine provided in
Fortran's IMSL Libraries. The max| i k routine provided in Gauss could also be used. ™

Direction Matrix

To decrease estimation time, we anayticaly program the derivatives and approximate the matrix of
second derivatives (the Hessian) with first order information. The most straightforward approximation of
the Hessian is the BHHH technique (Berndt et a. 1974), which is computed as:

§ &L, () oedlL, () 6"

R = - -
& Md & 1d 3

: [2-34]

where the score is defined as in Equation [2-29] (evaluated per sample observation). For Maximum
Simulated Likelihood, it is computed with the smulated scares [2-32].

Under certain regularity conditions, BHHH can be shown to be a consistent estimator of the covariance
meatrix of parameters at the maximum likelihood estimate. There are also numerous other approximations
that can be used, see Dennis and Schnabel (1983) for further discussion.

Standard Errors at Convergence

For afinite number of smulation draws, BHHH may substantially underestimate the covariance of the
estimator due to simulation error (see McFadden and Train, 2000, for a discussion). BHHH (or some other
approximation) is still preferred for the direction matrix due to the low cost of estimating the matrix as well
as the robustness of estimation with regards to the direction matrix. However, it is advisable to use robust
standard errors to generate the test statistics at convergence. A robust asymptotic covariance matrix
estimator is H *RH "* (Newey and McFadden, 1994), where H is the Hessian, calculated numerically or
andyticdly, and R isdefined asin Equation [2-34]. When simulation is used, the smulated Hessian and
Score are used. We report robust t-statistics (calculated using a numerical Hessian) for all estimation
results.

“ Note that Kenneth Train of UC Berkeley provides Gauss-based estimation code for logit kernel (ak.a. mixed logit) models from
hiswebsite: http://emlab.berkeley.edu/users/train/index.html
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Simulation Draws

We primarily use Haton draws for the simulation; however, some of the specifications are aso estimated
using pseudo-random draws for comparison. (See Bhat, 2000, and Train, 1999, for more information on
Haton draws.) We have found the Halton draws to be more efficient than pseudo-random draws. For
each observation, we draw I random vectors (z },...,z ., each (M ~ 1)) from the given multivariate
distribution of the factors, and these draws are kept constant across iterations so that the simulator does
not “chatter” as d changes (see McFadden and Train, 2000, for more information). The probability is
then smulated using Equation [2-30], the log-likelihood using Equetion [2-31], and the derivatives using
Equation [2-32].

Simulation Bias and Identification
Two issues critical to estimating logit kernel models are smulation bias and identification.

As noted above, the number of draws, 1D, must be large enough to sufficiently reduce the bias shown in
Equation [2-33]. The problem is that there is no way to know a priori how large is large enough, because
this depends on the particular model structure and data. Therefore it is always necessary, aswedo in
these applications, to verify that the estimated parameters remain stable as the number of drawsis
increased.

The number of draws aso plays an important role in testing for identification. Note that there are two
forms of unidentification: structural, as indicated by the order and rank conditions, and informational, which
is when the data do not provide enough information to support the given structure (i.e., multicollinearity). It
turns out that identification problems often do not appear (viaa singular Hessian) when a small number of
draws is used. For example, in the most extreme case, any specification (whether identified or not) will
always appear identified when only 1 draw is used, because this is equivalent to adding explanatory
variables to the systematic portion of the utility. This issue aso emphasizes the importance of checking the
rank condition prior to estimation, and of verifying robustness of estimates using different starting values.
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Figure a: 100 Halton Draws
1st and 2nd Dimensions (Seeds=2 & 3)

107 ¢ - .
. o ° o . .
LIS - A .
08 . o ¢ A ‘4
>
. Q‘ o . » . ot N
061 . ‘e PR R .
L 4
. R o s .
04 . . * .
: . - . . *
v * . . . * . K
027 * . . . .
. - - . N
. A4 . * 0
00 ¢ . ¢ . - - i
0.0 0.2 0.4 0.6 0.8 1.0
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Figure 2-1: 100 Halton Draws for Different Dimensions of the Integral

Another issue with the number of draws is that as the dimension of the problem increases the number of
draws necessary to estimate the model also increases. Conceptualy, the issue is that it takes more draws
to adequately cover the dimension space; this applies to al methods used to integrate non-closed form
functions (for example, Gaussian quadrature or smulation via pseudo-random or quasi-random methods).
It isinteresting to note that with Halton draws, planes develop when small numbers of draws are used for
high dimensional integrals. The generation of Halton draws is presented very clearly in Train (1999).
Briefly, to implement Halton draws, a non-random seriesis developed for each dimension, each seriesis
seeded with a prime number, and the seeds are implemented in order (2, 3, 5, 7, etc.). As an example of
the problem with planes developing, take an extreme case: 100 draws are often sufficient to estimate a
two dimensional modd. As shown in Fgure 2-1a, examination of a sample of Haton draws for a particular
observation shows that the draws cover the 1* and 2™ dimensions of the sample space quite well.
However, Figure 2-1b indicates that 100 draws for the 7" and 8" dimensions do not cover the space well,
and Figure 2-1c shows that the 100 draws for the 20" and 21 dimensions are even worse.

To summarize, due to the issues of bias and identification, it is critical to empiricaly verify on a case-by-
case basis that a sufficient number of draws are being used to estimate the model.

Synthetic Data I: Heteroscedasticity

The first application concerns a hypothetical choice situation among three adternatives. The model
gpecification is as follows.
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U, =a, +X,b+sz, +n,, ,
Uy, =@, + X, b +s 2, +n,,,
Us, = XanD +8 525, +n5,.
The true parameter values used to generate the synthetic data are:
a, =15 a,=05, b=-15s,=3 s,=2 s,=1 and m=1.

The explanatory variable, X , issmulated as a normal variable with a standard deviation of 3, independent
across aternatives and observations. The utilities for each observation are generated by drawing asingle
random draw for each z ;| from independent standard normal distributionsand each n;, from
independent standard Gumbe! digtributions. The utilities are calculated, and the dternative with the highest
utility is then the chosen dternative.

Estimation results using the synthetic data are provided in Table 2-1. Table 2-1a presents estimation results
regarding selecting and setting the base heteroscedastic term. Recall that only J - 1 heteroscedastic terms
are identified, and that it is necessary to either set the minimum variance term to zero, or set any of the
other variance terms high enough according to the equation derived earlier (Equation [2-23]):

syes, 'Sii)%+g“) V=13,

where s';; isthe theoretical (true) variance that is fixed to the value s f’f :

All of the moddsin Table 2-1a are estimated with 10,000 observations and 500 Halton draws. The first
model shows estimation results for an unidentified model; this model is used to determine the minimum
variance dternative, and it correctly identifies the third alternative as having minimum variance.”” Models 2
through 4 show identified models in which the minimum variance dternative is constrained to different
values (0, 1, and 2); as expected, the log-likelihoods of these models are basicaly equivalent and dl of
these represent correct specifications. Models 5 through 10 show identified models in which the maximum
variance alternative is congtrained to different values (0, 1, 1.5, 2.25, 3, and 4). Applying Equation [2-23]
(repeated above), the model specification will be correct aslong as s , is constrained to a value above
2.2. The empirical results verify this. First, there is a severe loss of fit when the s ; is constrained below
2.2. Second, the parameter estimates for the mis-specified models are biased. This can be seen by
examining the ratio of the systematic parameters (for example, b /a,) across models. While the scale
shifts for various normalizations (and therefore the parameter estimates also shift), the ratio of systematic
parameters should remain constant across normalizations. A cursory examination of the estimation results
shows that these ratios begin to drift with successively invalid normalizations. Findly, note that these
results indicate a dlight loss of fit when the base alternative is constrained to a high value (s ; =2 and

15 We were able to caculate t-statistics for the unidentified model here (and elsewhere) for two reasons. First, simulation has the
tendency to mask identification issues, and therefore does not always result in a singular Hessian for a finite number of draws.
Second, the dlight difference between the Gumbel and Normal distributions makes the unidentified model only ‘nearly’ singular,
and not perfectly singular.
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S, =4), and this is due to the issue addressed earlier regarding the dight difference between the Gumbel
and normal distributions. It must be emphasized that the normalization in heteroscedastic logit kernel
modesis not arbitrary.

Table 2-1: Synthetic Data | - Heter oscedastic M odels
(3 Alternatives)

Table a: Selecting and Setting the Base Heteroscedastic Term (10,000 Observations & 500 Halton Draws)

True Unidentified Identified: Minimum Variance Base Identified: Maximum Variance Base
Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
ag 15 127 @4 124 (157 151 (159 218 (159 ] 097 (9)  1.02 (79  1.08 (84 124 (58 157 (172) 203 (174
az 05 043 8| o042 @9 053 (02 o076 2| 037 (1) 040 (115 o041 (104 042 (2 o054 68 o070 (70
b -1.0 -0.80 (8] -0.78 (146) 094 (141 .136 (37| .01 (55 .057 (6500 -0.64 (91) .078 (160) ._098 (7)) .127 G711
S1 3.0 232 @9 224 OO 284 (103 430 (1LO] o0.00 - 1.00 - 150 225 -~ 300 4.00
S2 2.0 127 @91 121 (40 169 69 280 ()] o006 01 003 03 o050 (& 122 68 182 (L) 258 (149
S3 1.0 035 02] o000 - 100 - 200 000 09 000 @ o001 05 016 00 107 (¢4 1.78 (76)
(Simul) Log-Likelihood: -6837 -6837 -6837 -6838 -6907 -6865 -6845 -6837 -6837 -6838
Model: 1 2 3 4 5 6 7 8 9 10

Table b: Varying the Numbers and Types of Draws (10,000 Observations)

Halton Draws Pseudo-Random Draws

True  True with 200 Halton 1000 Halton 2000 Halton 4000 Halton 500 'Random'  1000'Random' 5000 '‘Random' 10000 'Random’

Parameter  Value S3=0 Est t-stat Est t-stat Est tstat Est t-stat Est  t-stat Est  t-stat Est  tstat Est t-stat

ap 15 1.18 122 (165) 124 (154 1.24 (155) 1.24 (145 1.20 (165) 1.21 (162 123 (156) 124 (157)

az 05 0.39 042 1) 042 ©8 042 (8 042 (9 0.42 (93 0.42 (01 042 (89 042 @9

b -1.0 -0.79 -0.77 (158 078 (142 78 (43) 078 (130)| .0.75 (156) .0.76 (153) .0.78 (144 .0.78 (146)

S1 3.0 223 219 (102) 225 (99 226 (95 225 (87) 2.14 (102) 2.15 (10.0) 223 (99 226 (97

S2 2.0 1.37 114 (46) 122 (49 123 (46 123 (42 1.06 (40 1.10 42 119 (44 122 @47)
s3 1.0 0.00 0.00 -- 0.00 -- 0.00 - 0.00 - 0.00 - 0.00 - 000 - 0.00
(Simul.) Log-Likelihood: -6837 -6837 -6837 -6836 -6835 -6839 -6838 -6836

Table c: Varying the Number of Observations (500 Halton Draws)

True 1000 Obs 5000 Obs 10000 Obs 40000 Obs 80000 Obs

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

ag 15 227 @) 164 (06 151 (159 145 (21) 154 (384

az 05 091 (@4 o068 @4 053 (2 053 (1849 052 (&7

b -1.0 -1.69 (19 099 (@3 094 (41) 095 (292 102 (332

S1 3.0 564 (17 313 (65 284 (103 285 (213) 305 (249

S2 2.0 358 (15) 162 (2 169 (69 172 (123) 208 (174
S3 1.0 100 1.00 1.00 1.00 1.00
(Simul) Log-Likelihood: -655 -3369 -6837 -27499 -54944

The models shown in Table 2-1b were estimated to investigate the impact of the number and types of
draws. All of these models are estimating using the normalization s ; =0, and so we report the true
parameters as calculated given this normalization (using Equations [2-15] to [2-17]). The model estimates
verify that the 500 Halton draws used for the modelsin Table 2-1a are sufficient. The results also show
that the Halton draws are more efficient then pseudo-random draws, as the parameter estimates stabilize
for alower number of Halton draws. Table 2-1c is provided to show that as the number of observations
increases, the estimated parameters converge on their true values. Note that a potentially large number of
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observationsis required to accurately reproduce the parameters of the population. However, the required
number of observations is highly dependent on the model specification and data, and generalizations cannot
be drawn.

Synthetic Data Il: Random parameters on Categorical Variables

The second application, which aso involves synthetic data, concerns the issue of identification of random
parameters for categorical variables. Recall that if the variable has two categories (i.e., a 0/1 dummy) then
one systematic parameter and one random parameter are identified, and the normalization of each is
arbitrary. For variables with 3 (or more) categories, two systematic parameters are identified but al 3
random parameters (one per category) are identified. Empirical results are shown in Table 2-2. Table
2-2a, b, and c dl use dightly different datasets and model specifications. The general specification is as
follows:

éb, U és 0 Oueé,,u

Uin :ai + [Xlin >(2in XSin] é 1l:l + [x]jn X2in X3in éol S Ol:l %1 u +n|n
é 2[;I e 2 u 8 2n(]
sf g0 0 s;g &anf

S i=1,...55 n,

where a =0 (the base aternative-specific constant) and X isacategorica variable, that is

Xin =108 & X;, + X, + X5, =1, " i; k=1,...,3; n. The data are generated using the same
approach as described in the synthetic data above, i.e., a X, z, andn are sampled for each person, the
utilities are caculated according to the model and parameters above, and the aternative with the highest
utility is the chosen dternative. 10,000 observations are used for al of the models.

The dataset for the models in 2aincludes a categorical variable with 2 categories ( X;,, =0" i,n). While
the covariance structure varies across individuals, identification is analogous to a nested structure with two
nests, for example, 1, 1,2,2,20r1,2,2,2,20r 1, 2,1, 2, 1, etc. depending on the valuesof X for
observation n." Therefore, 1 systematic parameter (b) and 1 random parameter (s ) can be estimated.
Furthermore, the normalization of the random parameter is arbitrary. These statements are supported by
the estimation results. The first two models show that the model with

16
This concept of a categorical variable being analogous to a 2-nest nesting structureis denoted as“ ~1, 1, 2, 2, 2" in Table 2-2.
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Table 2-2: Synthetic Data Il — Categorical Variables with Random Parameters
(5 Alternatives; 10,000 Observations)

Table a: Categorical variables with 2 categories, each enters all 5 utilities (~1, 1, 2, 2, 2)

Identified: Identified: Identified:
Unidentified  Unidentified Base 1 Base 2 Base 2
True 500 Halton 500 Halton 500 Halton 500 Halton 1000 Halton
Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
aj 05| 048 (@12 048 (112)| 048 (112 048 (112) 0.48 (112)
ap 05| 044 @2 044 (02| 044 (102 0.44 (102 0.44 (102)
ag 1.0 0.92 (27) 092 (27| 092 @7 092 @7 0.92 (227)
a4 10| 098 (42 098 (42| 0098 (42 0.98 (242) 0.98 (24.2)
b1 05| 050 (79 050 (79| 050 (79 050 (7.9 0.50 (7.9)
S1 2.0 0.84 (23 3.91 (139) 3.94 (144) 3.94 (144)
s2 40| 385 (36 047 (7| 3.94 (149
(s1%4s2%)"? 45| 394 3.94 3.94 3.94 3.94
(Simul.) Log-Likelihood: -15310 -15310 -15310 -15310 -15310
Model: 1 2 3 4 5

Table b: Categorical variables with 2 categories, each enters 4 of 5 utilities (~1, 1, 2, 2, 0)

Misspecified 1 Misspecified 2| Identified Identified

True 500 Halton 500 Halton 500 Halton 1000 Halton

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat
aj 05| 010 @5 041 @6 | 047 (51 047 (51
az 0.5 0.04 (06) 0.35 (82 0.41 (4.4 0.41 (45
az 10| 052 (78 080 (95| 090 @7  0.90 (9.8
a4 10| 057 @7 086 (2L0)| 095 (103 0.96 (104
bl 0.5 053 (87 011 (8| 050 (73 050 (7.3)
S1 2.0 229 @60)| 173 (84 173 (85
S2 40| 345 (@5 355 (132 3.55 (132)

(Simul.) Log-Likelihood: -15398 -15537 -15378 -15378

Table c: Categorical variables with 3 categories, each enters all utilities (~1, 1, 2, 2, 3)

Misspecified Identified Identified

True 500 Halton 500 Halton 1000 Halton

Parameter Value Est t-stat Est t-stat Est t-stat
al 0.5 0.36 (1.7 0.36 (17 0.36 (1.7)
ap 0.5 0.40 (85 0.40 (85 0.40 (85)
ag 1.0 0.93 (205) 0.93 (206) 0.93 (20.6)
a4 1.0 0.92 (02| 0.92 (203 092 (203)
bl 1.0 1.06 4| 106 (4 106 (67)
b2 0.5 1.06 (70| 069 @4 070 (44
s1 20| 347 @w2| 275 @5 277 (81
So 3.0 252 (68) 2.49 (6.7)
s3 40| 474 wmy| 437 @wrn 438 (109

(Simul.) Log-Likelihood: -15376 -15368 -15368




both random parameters is unidentified, as thefit isidentica for very different estimates of the random
parameters. The third and fourth models show that the normalization is arbitrary: the parameter and fit are
the same for either normalization. The fifth mode verifies that enough draws are being used for
estimation.

The dataset used for the modelsin Table 2-2b issmilar to that used in Table 2-2a, with the exception that
the categorical variable only applies to the first four alternatives ( X,;, =0" K, n). Inthiscase,
identification is related to a nested structure with three nests (for example, 1, 1, 2, 2, 0); therefore, 1
systematic parameter is estimable and both of the random parameters are estimable. Thisis shown in the
estimation results, where the models with either of the systematic terms fixed to O results in a significant
loss of fit.

In Table 2-2c, the categorical variable contains three categories. Identification here is also related to a
nested model with 3 nests (for example, 1, 1, 2, 2, 3), and therefore 2 systematic parameters are identified
and dl 3 random parameters are identified. Thisis supported by the estimation results, in which
congtraining one of the random terms to zero results in a significant loss of fit.

Empirical Application I.: Mode Choice

The logit kernel formulation is now making its way into econometric textbooks. In this section, we
investigate the identification issues of logit kernd models that appear in Greene (2000, Table 19.15) and
Louviere, Hensher and Swait (2000, Table B6.5). Both texts make use of the same data and present
smilar mode specifications.

The Data

Thisis arevealed choice dataset containing mode choices for travel between Sydney and Melbourne,
Austraia. The choices available are air, train, bus, and car.”’ There are 210 observationsin the sample,
and the explanatory variables are™:

GCost: Generdized cost ($00)
=invehicle cogt + in vehicle time*vaue of travel time savings.

TTime: Terminal waiting time for plane, train and bus (hours). Auto termina timeis zero.

Income:  Household income ($00,000), which is interacted with the ‘air’ aternative specific dummy
variable.

o The dataset is actualy a choice-based sample, and therefore the weighted exogenous sample maximum likelihood estimator
(WESML, see Ben-Akiva and Lerman, 1985) should be used for the logit-based models (and the probit-equivalent for the probit
models, see Imbens, 1992) to obtain consistent estimates. However, we did not use WESML in order to replicate the models as
reported in the textbooks.

* Note: (i) The Louviere, Swait, and Hensher model also included a‘party size' explanatory variable. We based our models on the
more parsimonious specification used in Greene. (i) We scaled the data differently than that used for the models reported in the
textbooks.
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Models

In this section, we use the models presented in Greene and Louviere et al. to highlight various practical
issues in model estimation. Greene estimated a series of models including probit as well as severd logit
kernel specifications (an unrestricted covariance structure, a heteroscedastic model, and a more genera
random parameter model). Louviere et a. present an even more genera random parameter model.

Table 2-3: Mode Choice M odel — Probit

Specification: Unidentified Identified
Draws: 1000 'Random’ 1000 ‘Random’ 1000 ‘Random’ 5000 'Random’
Est t-stat Est t-stat Est t-stat Est t-stat
- Altern. Specific constants

oA 0270 wa 0.968 nla 0456 (12 037 (09
E: Train (2) 0.579 nia 2.10 na 0.959 48 0.917 (35)
'; Bus (3) 0.486 nia 176 n/a 0.805 (4.4 0.768 (1)
; GCost ($00) -0.468 na 170 nia 0712 @0 0747 (48
L TTime (hours) -0.662 nia -2.39 nia 110 @8 103 @3
Income ($00,000) - Air (1) 0.700 nia 254 na 1.15 (20) 1.16 (25)
£ 1 0.608 na 2.20 nia 1.00 1.00
g 1 0.131 na 0476 nia 0216 (09 0224 @3
£ 31 00738 M oze7  ma)l g1 05 gup @9
% T22 0.246 nla 0.888 n/a 0.407 (3.0) 0.381 (29)
E-: 13 0113 na 0408  na 0186 (15 0175 (9
i 133 0.130 na 0471 nia 0216 @7 0202 (@4

Log Likelihood (simul.): -197.727 -197.727 -197.727 -197.784

Unrestricted Probit

Thefirst model we present is a probit model in which the covariance matrix of utility differences (W) is
unrestricted. In this case, the parameters of the Cholesky decomposition of W, are estimated, or:
. 0 0y
— u —
T=gL, T, O where TT¢=W,.
€r31 TZQ TKB H

Note that even with probit, one hasto be careful about identification. The Order Condition states that only
five of the six parameters can be estimated. (Greene indirectly estimates all six, and therefore reports
results for an unidentified model.) The need for this restriction can be verified empirically, and we present
the resultsin Table 2-3. These were obtained using the GHK simulator with pseudo-random draws. First
we report two sets of estimation results for the unidentified model. The two models have identical fits and
yet different parameter estimates (note that the difference is a scale shift). The models also have a
singular Hessian and therefore t-stats could not be generated. We a so report estimation results for the
identified mode (setting T,; =1). The model is now identified: the fit isidentica to the unidentified models
and the Hessian is not singular. The 5,000 draw result is provided to verify stability.
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Unrestricted Logit Kernel

Greene also presents alogit kerndl version of the probit model presented Table 2-3 (which he calsa

‘ congtants random parameters logit mode’). For the logit kernel version, the disturbance parameters
indudethesix T, parameters as well as the logit scale parameter m. The identification of this model
presents some interesting issues. First, an application of the order condition suggests that the m as well as
one of the T;;’s must be normalized for identification. However, as we will show empirically, thisis not
exactly the case. The reason is due to the dight difference between the Normal and Gumbel distribution.
Since there is not an exact trade-off between the probit-like term and the Gumbe, there is an optimal
weighting between the two distributions that make up the disturbance, and this allows an extra term to be
estimated. Nonetheless, the model is nearly singular without a constraint on a 'I'ij ,and o it isadvisable to
impose a normdization.

The second issue relates to the manner in which T, is normalized. The covariance matrix of utility
differences for this modd is:

€T +2g/nf

gTuTzﬁg/mz T1 + T, +2g/nf
grllT31 g/t T, Ty +T,T, +g/m® Tg+ T, + T +2g/ WEH

c\c\.c/

We want to impose a normalization such that the model can reduce to a pure MNL. Therefore we want to
normalize some T;; = 0. Note that we cannot set T,; = 0, because this will restrict two of the covariance
termsin the probit portion to be zero. We have aso found empirica evidence that it is not aways vaid to
set T,, =0 due to the positive definiteness condition. However, it appears that the normaization T,; =0
(or, more generally normalizing the lowest diagond element of the cholesky matrix) isavalid
normalization, and this is what we apply for this model. (See Appendix A for more information.)

The empirical results for the unrestricted logit kernel model are provided in Table 2-4. Thefirst two
columns provide estimation results for the casein which dl six T, ’s are estimated. The model is identified
as suggested by a non-singular Hessian and stable parameter estimates as the number of drawsis
increased. The middle columns provide estimation results for modelsin which T,; is normalized to various
values. There ismarginal loss of fit due to the normaizations, but the likelihood function isfairly flat across
the normdizations. The final column is provided to verify the stability of the normalized model with a high
number of draws.
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Table 2-4: Mode Choice Model — Unrestricted Logit Kernel

Specification: | Multinomial Logit ‘Unidentified’ (Nearly Singular) Identified with Various Normalizations Identified
Draws: 2000 Halton 40.000 Halton 2000 Halton 2000 Halton 2000 Halton 2000 Halton 4000 Halton

p Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
" Altern. Specific constants
% Air (1) 521 (53 442 (14 441 (19 442 (14 476 (08 828 (03 253 (09 441 (14
E Train(2) g7 (79 600 (12 602 (19 600 (14 828 (29 190 (@9 44 6 609 (1)
'J'f Bus (3) 316 (58 500 (1) 493 (14 500 (4 692 (@9 159 0 351 (8 500 (10
% GCost ($00) 155 (D 404 (00) 397 (09 404 (08 622 (13 154 (19) 331 (D) 404 (06)
r:‘n" TTime (hours) 577 (64) 750 (18) 743 @3 750 (22) 973 (9 215 (48) 489  (6) 750 (1)

Income ($00,000) - Air (1) 133 (14 555 (09 544 (0 555 (06) go1 (09 235 09 405 (00 555 (09
£ Ti1 485 (06 476 (07) 485 (07 778 (1) 203 (09 408 (19 48 (09
; T21 0934 (04 0904 (09 0933 (05 159 (09 435 (09 783 (11) 0928 (04)
& 31 0554 (04 0538 (09 0554 (09 0913 (07 250 (06 430 09 0551 (04)
i:_ T22 125 (03 118 03 125 03 281 (12 779 B9 e @Y 125 02
;E T32 0711 (03 0681 (04 0711 (04 130 (14 344 (14 755 (22 0709 (03
i 133 512603 (0D 78805 (00 0000 .00 400 100 0.00

Log Likelihood (simul.): -199.128 -195.466 -195.491 -195.466 -196.500 -197.713 -197.647 -195.481

Heteroscedastic Logit Kernel

Greene a0 reports a heteroscedastic logit kernel model (which he calls an *uncorrelated random
parameters logit model’). As with the unrestricted logit kernel model discussed above, the rank and order
conditions suggest a normalization is necessary when thisis not exactly the case. Nonetheless, a
normalization is advisable since the modd is otherwise nearly singular. Furthermore, as we emphasized
earlier, if anormalization isimposed, the selection of the base alternative to normalize is not arbitrary.

Table 2-5: Mode Choice Model — Heter oscedastic L ogit Kernel

Heteroscedastic Models
Specification: Multinomial ‘Unidentified" Identified: Identified: Identified: Identified:
Logit Base 1 Base 3 Base 4 Base 4
Draws: 1000 Halton 1000 Halton 1000 Halton 1000 Halton 5000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
" Altern. Specific constants
% Air (1) 521 (63 465 G 521 (64 465 (G 462 B9 469 67
i Train (2) 37 (19 519 (49 387 (79 519 (49 507 (68 508 (2
"j Bus (3) 316 (58) 420 (39 316 (64 421 (40 411 (4 412 (69
g GCost ($00) 4155 (1) 3271 (2 155 (37) 327 (33 317 (43 315 (46
f TTime (hours) 577 64 690 (64 577 (108) 690 1) 678 (70 678 (9
____Income ($00,000) - Air (1) 133 (14 368 (4 133 (1) 368 (14 353 (4 345 (19
L sl 338 (1) 000 - 338 (2 327 (34 318 (9
E« s2 0143 (00 00414 (00 0.143 (00 0128 (00 0029 (00
é: S3 000206 (00| 00181 (00 000 000266 (00| 0.00584 (00
' S4 0432 O] 0558 (00 0434 (02 000 0.00
Log Likelihood (simul.): -199.128 -196.751 -199.118 -196.751 -196.768 -196.255

The empirical results for the Mode Choice dataset are provided in Table 2-5. We estimate the
‘unidentified” model to determine the parameters that are candidates for normalization. The results suggest
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that train, bus, or car can be used as the base (Greene normalizes the car dternative). We then report
severd identified models with different base aternatives normalized, and show that the modd in which the
air heteroscedastic term is the base is a mis-specified modd (as indicated by the loss of fit).

Random Parameter Logit Kernel

Greene dso reports amode that expands the unrestricted logit kernel model presented in Table 2-4 by
including normally distributed random parameters for the cot, time, and income variables. ® The primary
issue here is that there are only 210 observations in the sample, and it is not a rich enough dataset to
support the estimation of alarge number of disturbance parameters. This is demonstrated with the
empirica results reported in Table 2-6, in which we present a series of random parameter models starting
with more parsimonious specifications.

The first modd is the multinomia logit model, provided for comparison. Modd 1-2 (estimated with 2000
and 4000 Haton draws) includes independent random parameters on the cogt, time, and income variables.
Thismodel appears identified, and results in alarge improvement in fit over the multinomia logit model 2
The t-stats are low here due to the correlation among the parameter estimates. Model 4 shows that
alowing for a single random parameter on the time variable achieves much of the total improvement in fit.
Modd 5-6 (estimated with 2000 and 4000 Halton draws) alows for afull set of correlations among the
random parameters, and this results in amargina improvement in fit over the independent model. (Note
that the Cholesky parameters and not the variances and covariances are reported). Model 7 is estimated
with a more parsmonious correlated structure. So far, these models all appear to be identified and provide
significant (and smilar) explanation of the disturbances. Thisis not the case for the remaining models.
Model 8-9 includes the three independent random parameters along with heteroscedasticity, and the model
appears unidentified. Model 10 is the model reported in Greene (although we normalized T,,). It includes
an unrestricted covariance structure as well as the three independent random parameters, and the model
appears unidentified. Louviere, Hensher and Swait report estimation results for amodel smilar to Greene
(i.e., an unregtricted covariance structure with additional random parameters), and their model, too,
appears unidentified.

The important points of these random parameter results are that, first, there are often several
specifications that result in a similar improvement in fit. Second, that it is important not to overdue the
specification, because it is easy to end up with an unidentified mode.

19 Note that since the time and cost parameters have a sign constraint, they should be specified with log-normally distributed
parameters.

20
Note that we achieved a much larger improvement in fit than any of the models reported in Greene and Louviere et a., even
with this more parsimonious specification.
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Table 2-6;: Mode Choice Model — Random Parameters

Specification: | Multinomial Logit Independent Random Parameters Correlated Random Parameters
Draws: 2000 Halton 4000 Halton 4000 Halton 2000 Halton 4000 Halton 4000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Air (1) 521 (63 120 (6 11.8 (9 949 (1) 178 (25 176 (28 108 (8)
Train (2) 387 (79 129 61 127 @9 965 (9 184 (@4 183 @9 107 G9
Bus (3) 316 (659 16 62 115 (26 869 (59 167 (24 165 (29 97 @7
GCost ($00) 155 (39 421 (20 414 (16) 257 (33 671 (16) 653 (19 402 (19
TTime (hours) 577 (64) 167 (3 165 @7) 125 69 241 @4 241 @9 134 69
Income ($00,000) - Air (1) 133 (14 961 (@9 948 (1) 593 (29 144 (19 13 @D 55 (20
T11(S1)
T21
T31
T22(S2)
T32
T33(S3)
GCost 0493 (04 0332 (01 499 (09 486  (11) 300 (13
TTime 107 (29 106 @1 79 @7 136 (20 141 (0 38 (04
Income - Air s34 (13 g1s (1) 694 (L0 556 (L3
GCost - TTime 921 (@9 g1z (9 770 @0
GCost - (Income-Air) 657 (06) 903 (09
TTime - (Income-Air) 136 (13 146 (19
Log Likelihood (simul.): -199.128 -177.523 -177.640 -178.680 -174.419 -174.420 -176.816
Model: 1 2 3 4 5 6 7

Specification:

Random Parameters &

Random Param.

Heteroscedasticity & Unconstrained
Draws: 2000 Halton 4000 Halton 2000 Halton
_Parameter Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Air (1) %7 MR 282 MR M1 R
Train (2) 313 MR 42 MR 560 R
Bus (3) 278 nla 304 nla 484 nla
GCost ($00) 134 Ma 146 Ma 230  Ma
TTime (hours) 395  Ma 433 Ma 699  Ma
Income ($00,000) - Air (1) 255  na 287  Ma 486  Ma
T11 (51) 124 Ma 117 Ma 43 M
T21 269  Ma
T31 0389  na
T22(52) 216 Na 207 Ma 490 M
T32 268 Ma
T33(53) 057 na 160  na 000
GCost 010 M 216 Na 267 A
TTime 255  na 281  na 458 na
Income - Air 669  Ma 1869 na 131 na
GCost - TTime
GCost - (Income-Air)
TTime - (Income-Air)
Log Likelihood (simul.): -176.072 -176.036 -175.393
Model: 8 9 10
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Empirical Application Il: Telephone Service

In this section, we apply these methods to residentia telephone demand analysis. The mode involves a
choice among five residentia telephone service options for local caling. A household survey was
conducted in 1984 for a telephone company and was used to devel op a comprehensive model system to
predict residential telephone demand (Train, McFadden and Ben-Akiva 1987). Below we use part of the
data to estimate a model that explicitly accounts for inter-dependencies between residential telephone
service options. We first describe the data. Then we present estimation results using a variety of error
structures.

The Data

Loca telephone service typically involves the choice between flat (i.e., afixed monthly charge for
unlimited calls within a specified geographica areq) and measured (i.e., areduced fixed monthly charge
for alimited number of cals plus usage charges for additiona calls) services. In the current application,
five services are involved, two measured and three flat. They can be described as follows:

Budget measured - no fixed monthly charge; usage charges apply to each call made.

Standard measured - a fixed monthly charge covers up to a specified dollar amount (greater that the
fixed charge) of locd caling, after which usage charges apply to each call made.

Local flat - a greater monthly charge that may depend upon residentia location; unlimited free calling
within local caling area; usage charges apply to calls made outside local caling area.

Extended area flat - afurther increase in the fixed monthly charge to permit unlimited free calling
within an extended area.

Metro area flat - the greatest fixed monthly charge that permits unlimited free calling within the
entire metropolitan area.

The sample concerns 434 households. The availability of the service options of a given household depends
on its geographical location. Details are provided in Table 2-7. In Table 2-8, we summarize the service
option availabilities over the usable sample.

Table 2-7: Telephone Data - Availability of Service Options

Geographic Location

Service Options Perimeter Exchan
Metropolitan Areas erimete anges

All Other

Adiacent to Metro Areag

Budget Measured Yes Yes Yes

Standard Measured Yes Yes Yes

Local Flat Yes Yes Yes
Extended Flat No Yes No
Metro Flat Yes Yes No

Table 2-8: Telephone Data - Summary Statistics on Availability of Service Options
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Service Options Chosen Percent Total Available

Budget Measured 73 0.168 434
Standard Measured 123 0.283 434
Local Flat 178 0.410 434
Extended Flat 3 0.007 13
Metro Flat 57 0.131 280

Total : 434 1.000 1595

Models

The model that we use in the present analysis is intentionally specified to be smple. The explanatory
variables used to explain the choice between the five service options are four alternative-specific
constants, which correspond to the first four service options, and a generic cost variable (the natural log of
the monthly cost of each service options expressed in dollars). We investigated three types of error
structures: heteroscedasticity, nested and cross-nested structures, and taste heterogeneity (random
parameters).

Heteroscedastic

The results for the heteroscedastic case are provided in Table 2-9 and Table 2-10. Table 2-9 displays
results from the unidentified modd. To explore the issue of normalization of the minimum variance
aternative, we estimated the unidentified model for various numbers of Halton draws and pseudo-random
draws. The results suggest that there is no strong base dternative, and it could be either dternative 1, 2, 4,
or 5. Teble 2-10 provides estimation results for identified heteroscedastic models. Again, to explore the
issue of the minimum variance aternatives, 5 identified models were estimated, each one with a different
base heteroscedastic term. (Note that this defeats the purpose of estimating the unidentified model, but
was done for illustration purposes only.) As indicated by the unidentified models, the identified model
estimation results support the conclusion that any of aternatives 1, 2, 4, or 5 could be set as the base.
However, congtraining S ; to zero results in asignificant loss of fit, whereas congtraining it to 4.0 brings it
in line with the correctly specified modd. Comparing the correctly specified heteroscedastic models with
the MNL model, there is an obvious gain in likelihood from incorporating heteroscedadticity, primarily due
to capturing the high variance of aternative 3.
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Table 2-9: Telephone M odel - Heter oscedastic Unidentified Models to Deter mine Base

100 Halton 200 Halton 400 Halton 1000 Halton 2000 Halton 5000 'Random'’ 10000 'Random’
p Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants

Budget Measured (1) -3.30 (69 -163.39 na -3.28 (19 -328 (17) -3.27 (1) 332 (12 -3.29 (17)
Standard Measured (2) -255 (65 -126.84 na -253 (63 -253 (64) 252 (68 -255 (64) 253 (69)
Local Flat (3) -1.38 (35 .7809 na -1.37 (36 -1.37 39 -1.36  (36) -1.38  @7) -1.37 (3§
Extended Flat (4) -1.07 (13 4431 na -1.04 (13 -1.04 (13 -1.04 (19 -1.06 (19 -1.04 (14
Log Cost 2,70 (12) -14518 na -2.68 (19 -2.68 (82 -2.67 (04 270 (1) 2.69 (16)
s 010 (03 6029 na 0.06 (03 003 (02 0.00 (01 031 (09 0.13 (04
S2 030 (03 6119 na 021 (03 014 (04 0.06 (03 020 (02 0.08 (02
S3 291 (2 19653 na 2.88 (33 288 (34 2.87 (36 291 (43 291 (1)
sS4 039 (03 1618 na 0.01 (00 0.04 (01 0.01 (00 011 (02 0.07 (03
Sg 022 (02 g136 na 0.01 (01 009 (03 0.01 (00 005 (1) 0.26 (02

(Simul.) Log-Likelihood: -471.09 -468.27 -471.16 -471.20 -471.19 -470.89 -471.38

Table 2-10: Telephone M odel - Identified Heter oscedastic M odels

MNL Identified Heteroscedastic Model
1000 Halton 1000 Halton 1000 Halton 1000 Halton 1000 Halton 1000 Halton | 5000 'Random' 10000 '‘Random’
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) 246 (64 -3.27 (19 327 (1) -5.03 (24 -3.28 (60 327 (19 -3.91 (2 328 (76) -3.28 (69
Standard Measured (2) -1.74 (66) -2.53 (66) 252 (62 -3.85 (22 253 (61 252 (65 -3.02 (24 253 (65) 253 (60
Local Flat (3) -0.54  (27) -1.37  (38) -1.36 (32 -1.09  (21) -1.37  (36) -1.36 (37) -1.67  (33) -1.37  (39) -1.37  (34)
Extended Flat (4) 074 (L1 -1.04 (13 -1.04 (19 -1.37  (15) -1.04 (14 -1.04 (14 -1.10 (12 -1.05 (13 -1.04 (14
Log Cost 2,03 @6 -268 ©2) 267 (49 324 (1) 268 (62 267 (2 333 @9 268 (1) 269 (19)
s1 0.02 (0.) 277 (18) 0.03 (0.0) 0.03 (03 0.76 (0.4
S2 0.13 (03 3.27 (L) 014 (1) 0.14 (03 0.70 (03 011 (02 0.10 (02
s3 2.88 (49) 288 (24 288 (39 2.87 (39 4.00 - 289 (47) 291 (9
S4 0.04 (01 004 (1) 1.14 (05 0.04 (09 011 (01 012 (02 0.07 (01
Sg 0.09 (03 009 (02 0.01 (00 0.10 (00 133 (13 003 (01) 0.26 (02
(Simul) Log-Likelihood: -477.56 -471.20 -471.20 -476.66 -471.20 -471.20 -471.42 -470.92 -471.39

Nested & Cross-Nested Structures

In Table 2-11, the estimation results of various nested and cross-nested specifications are provided. Table
2-11a reports results for identified model structures (as can be verified by the rank condition). The best
specification ismodel 3, in which the first two aternatives are nested, the last two aternatives are nested,
and the third term has a heteroscedastic term. This provides a significant improvement in fit over the MNL
specification shown in the first column, and also provides a better fit than the heteroscedastic modelsin
Table 2-10. The poor fit for many of the nesting and cross-nesting specifications is due to the fact that the
variance for aternative 3 is constrained to be in line with the other variances. The heteroscedastic models
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indicated that it has a much higher variance, and when this was added to the nested and cross-nested
models (see Table 2-11b) the fit improved dramatically.”

Table 2-11c provides results for the unidentified model in which the first two aternatives are nested and
the last 3 dternatives are nested, and we attempt (incorrectly) to estimate both error parameters. The first
model, estimated with 1,000 Halton draws, appears to be identified. However, the second model, estimated
using different starting values, shows that thisis not the case; it has an idertical fit, but very different
estimates of the error parameters. This is as expected, because only the sum of the variances (s 12 +s 22)
can be identified. The remaining columns show that it can take a very large number of draws to get the
telltale sign of an unidentified modd, the singular Hessian — in this case, 80,000 Halton draws. (Again, the
actual number depends on the specification and the data.) Table 2-11d shows that the normalization for the
2 nest modd is arbitrary. The table presents three normalizations resulting in identical fits where:

{1,1000}={00222}={11222withs,=s, }.

Table 2-11: Telephone Model - Nested & Cross-Nested Error Structures

Table a: Identified Nesting & Cross-Nesting Error Structures

Nested Structures Cross-Nested Structures
11222 1-2, 2-3, 3-4, 1-2, 2-3, 3-4,
Specification*: | 1,1,2,2,0 1,1,223 11,233 11,233 (SL 52 1,1,12,22 4-5,5-6 45,56
(5FS2 (all S equal) (all S equal)

Draws: 1000 Halton 1000 Halton 1000 Halton 2000 Halton 1000 Halton 1000 Halton 1000 Halton 5000 Halton

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

Budget Measured (1) -3.63 (5.0 -3.63 (5.0 -3.79  (5.4) -3.80 (5.3 -3.80 (5.7) -3.80 (5.7) -2.83  (24) -2.72 (3.2)
Standard Measured (2) -2.85 (4.3) -2.85 (43) -3.00 (46) -3.01  (46) -3.01 (49 -3.00 (49 -1.90 (31) -1.85 (39
Local Flat (3) -1.48  (31) -1.48  (31) -1.63  (31) -1.64  (31) -1.09 (36 -1.09 (35 -0.55 (23) -0.54 (24
Extended Flat (4) -1.52 (15 4152 (15) -1.18  (13) -1.18  (13) 2119 (14) 2119 (14) -0.76  (L0) -0.75 (10
Log Cost -3.05  (45) -3.05  (45) -3.19 (5.0 -3.20 (5.0 -3.25  (81) -3.25  (81) -2.40 (21) -2.29  (26)
s1 1.32 (1) 1.32 (11 155 (15) 155 (16 2.16  (30) 0.01 (08) 0.65 (0.6) 0.53  (0.6)
s2 3.02 (29 3.02 (29 334 (29 337 (28) 3.04 (30
s3 0.00 (0.0) 0.01 (03) 0.01 (02
(Simul.) Log-Likelihood: -471.26 -471.26 -470.70 -470.64 -473.04 -473.05 -477.48 -477.51

21
Therefore, the problem identified earlier with the cross-nested 1, 1, 1-2, 2, 2 structure does not apply to this dataset. In fact, as
shown by the modelsin Table 2-11c, dternative 3 has an even larger relative variance than the 1, 1, 1-2, 2, 2 structure provides.
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Table b: Nesting / Cross-Nesting plus Heteroscedasticity (0, 0, 1, 0, 0)

Combined Models

Specification*: 2 (25 21:'23:;’ % 2221333 2:2536:76471 >
equal)
Draws: 1000 Halton 1000 Halton 1000 Halton
Parameter Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) -3.81 (55) -3.80 (53) -3.28 (73)
Standard Measured (2) -3.02 (47 -3.01 (46) -2.53  (6.3)
Local Flat (3) -1.64  (31) -1.64  (31) -1.37 (35
Extended Flat (4) 4119 (13) -1.18 (1.3 -1.04 (13
Log Cost -3.21 (5.2 -3.20 (5.0 -2.68 (8.0
s1 3.37 (29 3.38 (28 288 (33
s2 111 (L6 0.03 (0.3) 0.09 (02
s3 1.55 (L6)
(Simul.) Log-Likelihood: -470.64 -470.69 -471.22

Table c: Unidentified Nested Error Structures

Specification*: 1, 1, 2, 2, 2 (Unidentified - can only estimate (S1°+52%)
Draws: 1000 Halton 1000 Halton ~ 10000 Halton 40000 Halton |40000 '‘Random’ 80000 Halton
Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) -3.80 (57) -3.80 (57 -3.80 (57 -3.80 (59 -3.81  (57) -3.80 na
Standard Measured (2) -3.01  (49) -3.01  (49) -3.01  (49) -3.01  (49) -3.01  (48) -3.01 na
Local Flat (3) -1.09  (36) -1.09  (36) -1.09  (36) -1.09  (36) -1.09 (35 -1.09  na
Extended Flat (4) -1.19 (14 -1.19  (14) -1.19  (14) -1.19  (14) 119 (14) -119  na
Log Cost -3.25  (6.) -3.25  (6.) -3.25  (6.) -3.25  (6.) -3.25 (6.0 -3.25  na
s1 2.65 (3.1 0.78 (05 255 (25 256 (15 1.83 (L1 193 na
s2 151 (22 295 (33) 167 (38) 168  (04) 245 (19 236 na
(s1%4s2%'" 3.05 3.05 3.05 3.06 3.06 3.05
(Simul.) Log-Likelihood: -473.02 -472.99 -473.02 -473.02 -472.95 -473.02
Table d: Identical (Identified) Nested Error Structures
Specification*: 1,1,0,0,0 0,0,22,2 1,1, 2 22(5:=82)
Draws: 1000 Halton 1000 Halton 1000 Halton 2000 Halton
Parameter Est T-stat] Est T-stat] Est T-stat Est T-stat
Altern. Specific constants
Budget Measured (1) 380 67| -380 67| -380 (57 380 (9
Standard Measured (2) -3.01 (49 -3.01 (49 -3.01 (49 -3.01 (49
Local Flat (3) -1.09 (36 -1.09 (36 -1.09 (36 -1.09 (36
Extended Flat (4) -1.19  (14) -1.19  (14) -1.19  (14) -1.19  (L4)
Log Cost -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) -3.25  (6.1)
S1 3.05 (30 2.16 (3.0) 2.15 (30)
s2 3.05 (30) 2.16 2.15
(s1%,52%'2 3.05 3.05 3.05 3.04
(Simul.) Log-Likelihood: -473.02 -473.03 -473.04 -473.01

* the specification lists the factors (and sigmas) that apply to each of the five alternatives
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Random Parameters

We also considered unobserved taste heterogeneity for the parameter on log of cost. Since the parameter
has a sign congtraint, alognorma distribution is used. (Draws from alognormal distribution are generated
by exponentiating draws taken from anormal distribution.) The results are shown in Table 2-12. The first
model shows that when there are no other covariance parameters specified, the heterogeneity on log cost
isinggnificant. However, the second model shows that heterogeneity does add dightly to the explanatory
power of the best nested model as specified in Table 2-11a. The remaining 4 models report specifications
with both heterogeneity and taste variation. While the rank and order conditions suggest that a modd with
4 heteroscedastic parameters and the lognorma parameter is identified, the estimation results show that
there is a multicollinearity problem. Note that when only 200 pseudo-random draws are used, this model
appears, incorrectly, to be identified.

Table 2-12: Telephone Model - Taste Variation, Lognormal Parameter for Log(Cost)

Specification*: | Taste Variation 1,1,2,3,3 & Taste Variation 1,2,3,4,5 & Taste Variation
Draws: 1000 Halton 1000 Halton 2000 Halton 1000 Halton 200 'Random’ 1000 Halton 1000 Halton
_Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
Altern. Specific constants
Budget Measured (1) 246 (82 -3.48 (57) -3.50 (43)| -24.20 nha -406 (26) -30.36 nla -26.84 na
Standard Measured (2) -1.74  (65) -2.68  (47) 270 35| -16.75 na -3.06 (28) -2203 nfa -19.41 na
Local Flat (3) 054 (@7) -1.44  (31) 145 (27) 757 na -157 (24 -1072 nfa 977 na
Extended Flat (4) 0.74  (10) -0.98 (L1 -0.98 (L1 333 na -1.07 (1Y) 511 nla 475 na
Log Cost * 203 (96 317  (56) -3.18 (1| -2330 na 369 (27) -2838 nja  -26.02 na
S Log Cost ** 0.00 (01) 118 (L1 116 (o)| 1839 na 165 (14 1885 nja 1854 nfa
sl 0.40 (01 050 (@] 1238 na 1.00 (06 1372 nfa 12.19 nha
s2 356  (30) 358 (30) 9.06 nha 0.72 (05 1134 nfa 9.02 nha
s3 0.05 (08) 0.01 (1| 2450 na 413 (23 3045 nja 28.96 na
sS4 049 nla
S5 0.88 nla 0.24 (0.6 1.26 nia
Log Likelihood (simul.): -477.56 -470.36 -470.28 -469.15 -470.74 -468.69 -469.47

** the mean and standard deviation of the lognormal are reported

Summary of Telephone Data Models

By far the most important part of the error structure for the telephone dataset is that the Loca Flat
Alternative (3) has a significantly higher variance than the other aternatives. Note that asimple
heteroscedastic model outperforms the most obvious nested structure in which the measured aternatives
are nested together and the flat alternatives are nested together. Marginal improvements can be achieved
by incorporating nesting, cross-nesting or taste variation as long as alternative 3 is alowed a free variance.
While this dataset served its purpose in highlighting specification and identification issues, one would idedly
like to estimate such logit kernel models with larger datasets.
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Conclusion

In this chapter we presented general rules for specification, idertification, and estimation via maximum
simulated likelihood for the logit kernel model. We presented guidelines for examining identification and
normalization, which congisted of three conditions: order, rank, and positive definiteness. The positive
definiteness condition is not an issue for probit models. However, as the heteroscedastic case highlights, it
can have important consequences for logit kernd. We emphasized that identification must be examined on
a case-hy-case basis, and that it is not necessarily intuitive. Furthermore, given the fact that smulation has
atendency to mask identification problems, it becomes even more critica that identification is well
understood.

We discussed in detail the specification and identification of many of the special cases, al within ageneral
factor analytical framework, including:

Heter oscedasticity: F,, diagond (fixed) ; T diagond.

Nesting (Cross-Nesting): F.F," block-diagond (fixed) ; T diagond.

Error Components: F, fixedto0/1; T (usudly) diagond.

Factor Analytic: F., unknown; T triangular.

Autoregressive Process: F., moving average form of a GAR(1) process; T diagond.
Random parameters: F,, afunction of explanatory variables (fixed) ; T triangular.

Just as there are well-known standard rules for identification for the systematic parametersin a
multinomia logit, we aimed to develop identification rules for the disturbance parameters of the logit kernel
model. There are critical differences between the identification of these parameters and the identification
of their counterparts in both the systematic portion of the utility as well astheir counterparts in a probit
model. The following summarizes these identification rules:

Heter oscedasticity

J =2 dternatives: 0 parameters identified.
J 3 3 dternatives: J - 1 parametersidentified &
must constrain the minimum variancetermto O.
Nesting
M =2 nests: M - 1 parameters identified &
normalization is arbitrary.
M 3 3 nests: M parameters identified.

Random parameters
Beyond the specific rules listed below, can estimate
as many random parameters as the data will support.

Alter nate-specific variables
Rules for heteroscedasticity, nesting, and error components apply.
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Categorical variables with independently distributed parameters

M =2 categories: M - 1 parameters identified &
normalization is arbitrary.

M 3 3 or more categories: M parameters identified.
(Includes a binary categorical variable that does not
enter al utilities,)

Characteristics of the Decision-maker with independently distributed parameters

Interacts with alternative-specific constants: Analogous to the heteroscedastic case:
J - 1 parameters identified & must congtrain the
minimum variancetermto O.

Interacts with nest-specific constants: Analogous to nested case:
M =2 nests: M - 1 parameters identified.
M 3 3 nests: M parameters identified.

Our objectives were that through examination of the special cases we would be able to establish some
identification and specification rules, and aso highlight some of the broad themes and provide tools for
uncovering other potential issues pertaining to logit kernel models. Clearly there are numerous
identification issues that are not covered by the above list. Therefore, modds have to be examined on a
case-hy-case basis. For the alternative-specific portion of the disturbance, it is recommended that the rank
and order conditions be programmed into the estimation program. When the positive definiteness condition
comes into play, it is recommended to examine the problem anayticaly, where possible, or empiricaly (by
investigating various normalizations). For random parameter models, it is recommended to use the above
identification rules as guiddines, and then empiricaly establish identification by (1) verifying that the
parameter estimates are stable as the number of draws are increased and (2) checking that the Hessian is
non-singular at the convergence point.

One of the most important points of the chapter is that there are critical aspects to the logit kernel
specification that are often overlooked in the literature. It must be remembered that thisis areatively new
methodology, and there are numerous aspects that warrant further research, including:

More testing and experience with applications,
Further exploration of identification and normalization issues,
Continued compilation and analysis of specid cases and rules of identification,

Better understanding of the impact on analysis of different factor specifications (particularly since
often several factor specification will provide smilar fit to the data),

Investigation of analogous specifications estimated via different methods (for example, logit kernel
versus probit, nested logit, cross-nested logit, heteroscedastic extreme value, etc.)

Additional comparisons with GHK and other smooth simulators, and
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Further examination of Halton draws as well as other pseudo- and quasi-random drawing methods.

Finally, we aso may need to look at modifying the specification of the logit kernel model to dleviate some
of the complications. One of the issues with the logit kernel specification is that while pure logit is a specia
case of the model, pure probit is not. Our analysis assumes that it is acceptable to include the Gumbd term
in the model. However, the Gumbel term may, in fact, have no business being in the modd. For this
reason, we would ideally want to specify and estimate the model in away that alows the Gumbd term to
disappear. Conceptually, such amodel could be specified as alinear combination of the two error terms,
s0 Equation [2-4] (assuming a universal choice set) would become:

U, =X,b +(g/nP)2- | F Tz, +In,,

where | isan unknown parameter. The covariance of the mode isthen alinear combination of the two
covariance matrices:

cov(Un):((l- | 2)FETT'F, '+ 2|J)(g/mz) .

Conceptually this Combined Logit-Probit (CLP) specification is an appealing model. Note that a strict
application of the order and rank conditions lead to the conclusion that the model is not identified.
However, as we described in the section on identification, the dight difference between the Gumbel and
Normal distributions makes the model identified (albeit, nearly singular).

To summarize, the logit kernel formulation has a tremendous amount of potential, because it can replicate
any desirable error structure and is straightforward to estimate via maximum simulated likelihood.
However, it aso has some issues that must be understood for proper specification. As increased
computational power and readily available software open up these techniques for widespread use, itisa
critical time to understand and address the nuances of the logit kernel model.
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Chapter 3:

Integration of Choice and Latent
Variable Models™

Chapter 2 focused on the random portion of the utility function. The extension described in this chapter
focuses on the causal structure and the specification of the systematic part of the utility function. The
methodology we investigate can be used when important causal variables are not directly observable. The
ideais to explicitly incorporate latent constructs such as attitudes and perceptions, or any amorphous
concept affecting choice, in an effort to produce more behavioraly reaistic models. This method makes
use of what are called psychometric indicators (for example, responses to survey questions about attitudes,
perceptions, or decision-making protocols), which are manifestations of the underlying latent variable. The
objective of the work presented here is to develop a genera framework and methodology for incorporating
latent variables into choice models.

Introduction

Recent work in discrete choice models has emphasized the importance of the explicit treatment of
psychological factors affecting decision-making. (See, for example, Koppelman and Hauser, 1979;
McFadden, 1986; Ben-Akiva and Boccara, 1987; Ben-Akiva, 1992; Ben-Akiva et d., 1994; Morikawa et
a., 1996.) A guiding philosophy in these developments is that the incorporation of psychologica factors
leads to a more behavioraly realistic representation of the choice process, and consequently, better
explanatory power.

This chapter presents conceptual and methodological frameworks for the incorporation of latent factors as
explanatory variables in choice models. The method described provides for explicit treatment of the
psychologica factors affecting the decision-making process by modeling them as latent variables.
Psychometric data, such as responses to attitudinal and perceptua survey questions, are used as indicators

? This chapter is based on Ben-Akiva, Walker, et . (1999).
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of the latent psychological factors. The resulting approach integrates choice models with latent variable
models, in which the system of equations is estimated smultaneously. The simultaneous estimation of the
model structure represents an improvement over sequential methods, because it produces consistent and
efficient estimates of the parameters. (See Everitt, 1984 and Bollen, 1989 for an introduction to latent
variable models and BenrAkiva and Lerman, 1985 for a textbook on discrete choice models.)

Three prototypical applications from the literature are reviewed to provide conceptual examples as well as
sample equations and estimation results. The applications illustrate how psychometric data can be used in
choice models to improve the definition of attributes and to better capture taste heterogeneity. They aso
demongtrate the flexibility and practicality of the methodology, as well as the potentia gain in explanatory
power and improved specifications of discrete choice models.

Related Literature

As described in the Chapter 1, discrete choice models have traditiondly presented an individud’s choice
process as a black box, in which the inputs are the attributes of available aternatives and individual
characteristics, and the output is the observed choice. The resulting models directly link the observed
inputs to the observed output, thereby assuming that the inner workings of the black box are implicitly
captured by the model. For example, discrete choice models derived from random utility theory do not
mode explicitly the formation of attitudes and perceptions. The framework for the random utility discrete
choice model shown in Chapter 1 is repeated in Figure 3-1.%

There has been much debate in the behavioral science and economics communities on the validity of the
assumptions of utility theory. Behavioral researchers have stressed the importance of the cognitive
workings inside the black box on choice behavior (see, for example, Abelson and Levy, 1985 and Olson
and Zanna, 1993), and a great deal of research has been conducted to uncover cognitive anomalies that
appear to violate the basic axioms of utility theory (see, for example, Gérling, 1998, and Rabin, 1998).

M cFadden (1997) summarizes these anomalies and argues that “ most cognitive anomalies operate through
errors in perception that arise from the way information is stored, retrieved, and processed” and that
“empirica study of economic behavior would benefit from closer attention to how perceptions are formed
and how they influence decision-making.” To address such issues, researchers have worked to enrich
choice models by modeling the cognitive workings insde the black box, including the explicit incorporation
of factors such as attitudes and perceptions.

A general approach to synthesizing models with latent variables and psychometric measurement models
has been advanced by a number of researchersincluding Keedling (1972), Joreskog (1973), Wiley (1973),
and Bentler (1980), who developed the structural and measurement equation framework and methodol ogy
for specifying and estimating latent variable models. Such models are widely used to define and measure
unobservable factors. Estimation is performed by minimizing the discrepancy between (a) the covariance

= Note that the terms in ellipses represent unobservable (i.e., latent) constructs, while those in rectangles represent observable
variables. Solid arrows represent structural equations (cause-and-effect relationships) and dashed arrows represent measurement
equations (relationships between the underlying latent variables and their observable indicators).
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matrix of observed variables and (b) the theoretical covariance matrix predicted by the model structure,
which isafunction of the unknown parameters. Much of this work focuses on continuous latent constructs
and continuous indicators. When discrete indicators are involved, direct application of the approach used
for continuous indicators results in inconsistent estimates. For the case of discrete indicators, various
corrective procedures can be applied. Olsson (1979), Muthén (1979, 1983, and 1984), and others

devel oped procedures based on the application of polychoric correlations (rather than the Pearson
correlations used for continuous indicators) to estimate the covariance matrix of the latent continuous
indicators from the discrete indicators. Consistent estimates of the parameters can then be obtained by
minimizing the discrepancy between this estimated covariance matrix and the theoretical covariance
matrix. (See Bollen, 1989, for more discussion of discrete indicators.) Estimation methods for the Situation
of discrete latent variables and discrete indicators was developed by Goodman (1974)—see M cCutcheon
(1987) for adiscussion.

In the area of choice modeling, researchers have used various techniques in an effort to explicitly capture
psychological factors in choice models. One approach applied isto include indicators of psychologica
factors (such as responses to survey questions regarding individuals' attitudes or perceptions) directly in
the utility function as depicted in Figure 3-2 (see, for example, Koppelman and Hauser, 1979; Green, 1984;
Harris and Keane, 1998).

Another frequently used approach isto first perform factor analysis on the indicators, and then use the
fitted latent variables in the utility, as shown in Figure 3-3. (See, for example, Prashker, 1979a,b; and
Madanat et a., 1995). Note that these fitted variables contain measurement error, and so to obtain
consistent estimates, the choice probability must be integrated over the distribution of the latent variables,
where the distribution of the factorsis obtained from the factor analysis model. (See, for example,
Morikawa, 1989.)

Other approaches have been developed in market research (in an area called internal market analysis),
in which both latent attributes of the alternatives and consumer preferences are inferred from preference
or choice data. (For areview of such methods, see Elrod, 1991; and Elrod and Keane, 1995.) For example,
Elrod 1988 and 1998, Elrod and Keane 1995, and Keane 1997 develop random utility choice models
(multinomid logit and probit) that contain latent attributes. In estimating these models, they do not use any
indicators other than the observed choices. Therefore, the latent attributes are alternative-specific and do
not vary among individuasin a market segment. (In this way, they can be described as the aternative-
specific factor analytic specification presented in Chapter 2.) However they do use perceptua indicators
post-estimation to aid in interpretation of the latent variables. The framework for their model is shown in
Figure 3-4. Wedd and DeSarbo (1996) and Sinha and DeSarbo (1997) describe a related method based on
multidimensiond scaing.

This research extends the above-described methods by formulating a general trestment of the inclusion of

latent variables in discrete choice models. The formulation incorporates psychometric data as indicators of
the latent variables. We employ a smultaneous maximum likelihood estimation method for integrated latent
variable and discrete choice models, which results in consistent and efficient estimates of the model
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parameters. The formulation of the integrated model and the simultaneous estimator are described in the
following sections of the chapter.

Contribution of the Chapter

The work on the methodology presented here began during the mid-1980s with the objective of making the
connection between econometric choice models and the extensive market research literature on the study
of consumer preferences (Cambridge Systematics, 1986; McFadden, 1986; and Ben-Akiva and Boccara,
1987). A number of empirical case studies, a sampling of which isreviewed in this chapter, have been
undertaken over the years. While the ideas have been around for some time, the literature contains only
empirical applications to specific problems (for example, the case studies reviewed here) or restricted
model formulations (for example, the elegant formulation for a binary probit and MIMC mode presented in
McFadden, 2000, and Morikawa et a., 1996). The contribution of this chapter is the presentation of a
genera specification and estimation method for the integrated model, which provides complete flexibility in
terms of the formulation of both the choice model and the latent variable modd. In addition, the proposed
method is reviewed within the context of other potential approaches, and its advantages discussed.

Explanatory
Variables

|
|
h 4

Choice

Figure 3-1:
Random Utility Discrete Choice M odel
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Behavioral Framework for Choice Models with Latent Variables

Before presenting the methodological framework and specification, it is useful to discuss the behaviora
framework behind joint choice and latent variable models. The framework is presented in Figure 3-5 (Ben+
Akiva and Boccara, 1987), and the notation will be explained in the next section. The objectiveisto
explicitly anayze latent psychological factorsin order to gain information on aspects of individua behavior
that cannot be inferred from market behavior or revealed preferences. In this behaviora framework, three
types of latent factors are identified: attitudes, perceptions, and preferences.

Cause-Effect Behavioral Relationships

Attitudes and perceptions of individuals are hypothesized to be key factors that characterize the underlying
behavior. The observable explanatory variables, including characteristics of the individua (for example,
socio-economics, demographics, experience, expertise, etc.) and the attributes of alternatives (for example,
price) are linked to the individua’ s attitudes and perceptions through a causa mapping. Since attitudes and
perceptions are unobservable to the analyst, they are represented by latent constructs. These latent
attitudes and perceptions, as well as the observable explanatory variables, affect individuals preferences
toward different aternatives and their decision-making process.

Characteristics of the Individual S
and Attributes of the Alternatives Z

Attitudinal Perceptual
Indicators Indicators
IS IZ
Stated
Preferences
ySP

Revealed
Preferences

yRP

Figure 3-5: Behavioral Framework for Choice M odelswith Latent Variables

Perceptions are the individuas beliefs or estimates of the levels of attributes of the alternatives. The
choice process is expected to be based on perceived levels of attributes. Perceptions explain part of the
random component of the utility function through individual-specific unobserved attributes. Examples of
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perceptions in atravel mode choice context for the trangit aternative are safety, convenience, reliability,
and environmental friendliness. Examples of perceptions for toothpaste are health benefit and cosmetic
benefit (Elrod, 1998).

Attitudes are latent variables corresponding to the characteristics of the decision-maker. Attitudes reflect
individuas needs, vaues, tastes, and capabilities. They are formed over time and are affected by
experience and externa factors that include socioeconomic characteristics. Attitudes explain unobserved
individua heterogeneity, such as taste variations, choice set heterogeneity and decision protocol
heterogeneity. Examples of attitudes in a travel mode choice context are the importance of reliability,
preferences for a specific mode, and sensitivities to time and cost. Examples of attitudes about
toothpaste are the importance of health benefits, cosmetic benefits, and price.

In this framework, asin traditiona random utility models, the individud’s preferences are assumed to be
latent variables. Preferences represent the desirability of alternative choices. These preferences are
trandated to decisions via a decision-making process. The process by which one makes a decision may
vary across different decision problems or tasks, and is impacted by type of task, context, and
socioeconomic factors (Gérling and Friman, 1998). Frequently, choice models assume a utility
maximization decision process (as in the case studies reviewed later). However, numerous other decision
processes may be appropriate given the context, for example habitua, dominant attribute, or a series of
decisions each with a different decision-making process. Various types of decision processes can be
incorporated into this framework.

The Measurement Relationships

The actual market behavior or revealed preference (RP) and the preferences elicited in stated preference
(SP) experiments are manifestations of the underlying preferences, and therefore serve as indicators.”
Similarly, there may aso be available indicators for attitudes and perceptions such as responses to
attitudinal and perceptual questions in surveys. For example, one could use rankings of the importance of
attributes or levels of satisfaction on a semantic scale. As stated earlier, indicators are helpful in model
identification and increase the efficiency of the estimated choice model parameters.

24 A method for combining revealed and stated preferencesis covered in Chapter 4.
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Benefits of the Framework

The integrated choice and latent variable modeling framework alows us to explicitly mode the cognitive
processes enclosed by the dashed linesin Figure 3-5. Incorporating such latent constructs in choice models
requires a hypothesis of the type and the role of the latent variables, as well as indicators of the latent
variables (i.e., data).

The simple framework shown in Figure 3-5 is a bit decelving. Attitudes can in fact be any latent
characteristic of a decision-maker and thus incorporate concepts such as memory, awareness, tastes,
godls, etc. Attitudes can be specified to have a causal relationship with other attitudes and perceptions, and
vice-versa. Tempora variables can aso be introduced in the specification, and different processes by
which people make decisions could be included, such as those described in the section above. There is ill
a tremendous gap between descriptive behaviora theory and the ability of statistical models to reflect
these behavioral hypotheses. Examining the choice process within this framework of latent characteristics
and perceptions opens the door in terms of the types of behavioral complexities we can hope to capture,
and can work to close the gap between these fields.

Aswith all statistical models, the consequences of mis-specification can be severe. Measurement error
and/or exclusion of important explanatory variables in a choice model may result in inconsistent estimates
of dl parameters. Aswith an observable explanatory variable, excluding an important attitude or
perception will also result in inconsistent estimates. The severity depends highly on the modd at hand and
the particular specification error, and it is not possible to make generalizations. Before applying the
integrated choice and latent variable methodology, the decision process of the choice of interest must also
be considered. For more information on behaviora decision theory, see Engd, Blackwell and Miniard
(1995) and Olson (1993) for generd reference, Garling, Laitilaand Westin (1998) for discussion of
behavior regarding activity and transportation decisions, as well as the other references listed in the
“Supporting Research” section of this chapter.

Methodology

Herein we develop a genera methodology for the incorporation of latent variables as explanatory factors
in discrete choice models, so that we can capture the behavioral framework represented by Figure 3-5.
The resulting methodology is an integration of latent variable models, which aim to operationalize and
quantify unobservable concepts, with discrete choice methods. The methodology incorporates indicators of
the latent variables provided by responses to survey questionsto aid in estimating the model. A
simultaneous estimator is used, which results in latent variables that provide the best fit to both the choice
and the latent variables indicators.

Notation
The following notation, corresponding to choice model notation, is used:

X observed variables, including:

n
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a,b,l
w,e,u

S,s

S, characteristics of individua n,
Z,, attributes of dternative i andindividud n.

latent (unobservable) variables, including:
S, latent characteristics of individua n,
Z,, latent atributes of aternative i as perceived by individua n.

indicators of X, .

(For example, responses to survey questions related to attitudes, perceptions, etc.)
| indicators of 31

|, indicatorsof Z;, .

utility of aternative i for individud n.
vector of utilities.

choice indicator; equal to 1 if aternativei ischosen by individuad n and O otherwise
vector of choice indicators.

unknown parameters.

random disturbance terms.

covariances of random disturbance terms.
disgtribution function.

standard norma probability density function.

standard normal cumulative distribution function.

Framework and Definitions

The integrated modeling framework, shown in Figure 3-6, consists of two components, a choice model and

alatent variable modd.

Aswith any random utility choice modd, the individua’s utility U, for each dternative is assumed to be a

latent variable, and the observable choices y, are manifestations of the underlying utility. Such

observable variables that are manifestations of latent constructs are called indicators. A dashed arrow

representing a measurement equation links the unobservable U | to its observable indicator Y, . Solid

arrows representing structural equations (i.e., the cause-and-effect relationships that govern the decision

making process) link the observable and latent variables (X, X ) to the utility U, .

It is possible to identify a choice model with limited latent variables using only observed choices and no

additiond indicators (see, for example, Elrod, 1998). However, it is quite likely that the information content

from the choice indicators will not be sufficient to empirically identify the effects of individual-specific

|atent variables. Therefore, indicators of the latent variables are used for identification, and are introduced

in the form of alatent variable modd!.
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The top portion of Figure 3-6 is a latent variable model. Latent variable models are used when we have
available indicators for the latent variables X . Indicators could be responses to survey questions
regarding, for example, the level of satisfaction with, or importance of, attributes. The figure depicts such
indicators |, as manifestations of the underlying latent variable X, and the associated measurement
equation is represented by a dashed arrow. A structural relationship links the observable causal variables
X, (and potentially other latent causal variables X ) to the latent variable X .

The integrated choice and latent variable model explicitly models the latent variables that influence the
choice process. Structural equations relating the observable explanatory varigbles X, to the latent
variables X_ model the behavioral process by which the latent variables are formed. While the latent
congtructs are not observable, their effects on indicators are observable. The indicators allow identification
of the latent constructs. They aso contain information and thus potentially provide for increased efficiency
in model estimation. Note that the indicators do not have a causal relationship that influences the behavior.
That is, the arrow goes fromthe latent variable to the indicator, and the indicators are only used to aid in
measuring the underlying causal relationships (the solid arrows). Because the indicators are not part of the
causal relationships, they are typically used only in the model estimation stage and not in model application.

General Specification of the Model

As described above, the integrated model is composed of two parts. a discrete choice model and a latent
variable model. Each part consists of one or more structural equations and one or more measurement
equations. Specification of these equations and the likelihood function follow.

Structural Equations

For the latent variable model, we need the distribution of the latent variables given the observed
vaiiables, f,(X, | X,;! ,S,,) - For example:

X =h(X;l)+w_  and w,~D(0,S,). [3-1]
This results in one equation for each latent variable.
For the choice model, we need the digtribution of the utilities, f,(U, | X,, X,;b,S,). For example:
U,=V(X,,X;b)+e, and e ~D(0S,). [3-2]

Note that the random utility is decomposed into systematic utility and a random disturbance, and the
systemtic utility is afunction of both observable and latent variables.

89



Explanatory \
Variables X

\ > Latent Variable
Model
Latent — Latent Variable
Variables X* Indicators |

Choice
Indicators y

~

Choice Model

Figure 3-6: Integrated Choice and Latent Variable Model

Measurement Equations

For the latent variable mode, we need the distribution of the indicators conditiona on the vaues of the
|latent variables, f,(1,|X,,X,;a,S,). For example:

I, =m(X,,X;a)+u, and u, ~D(0,S,). [3-3]

This results in one equation for each indicator (i.e., each survey question). These measurement equations
usually contain only the latent variables on the right-hand-side. However, they may also contain individua
characteristics or any other variable determined within the model system such as the choice indicator. In
principle, such parameterizations can be alowed to capture systematic response biases when the individual
is providing indicators. For example, in a brand choice mode! with latent product quality (Z, ), one may
include the indicator Y, for the chosen brand, for example, 1., =a, Z. +a, Yy, +U, ., Where | isan

indicator of the perceived quality of aternative i . Thiswould capture any exaggerated responsesin
reporting the perceived quality of the chosen brand, perhaps caused by justification bias.

For the choice model, we need to express the choice as a function of the utilities. For example, assuming
utility maximization:
bLif U, =maqu,, }
Yin =1 : :
10, otherwise
[3-4]
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Note that h(¥, V (¥, and m(¥ are functions, which are currently not defined. Typicaly, asin the case
studies reviewed later, the functions are specified to be linear in the parameters, but thisis not necessary.
Also note that the distribution of the error terms must be specified, leading to additiona unknown
parameters (the covariances, S). The covariances often include numerous restrictions and normalizations
for model smplification and identification.

Integrated Model

The integrated model consists of Equations [3-1] to [3-4]. Equations [3-1] and [3-3] comprise the latent
variable model, and Equations [3-2] and [3-4] comprise the choice model. From Equations [3-2] and [3-4]
and an assumption about the distribution of the disturbance, e, we derive P(y, | X, X, ;b,S,), the
choice probability conditional on both observable and latent explanatory variables.

Likelihood Function

We use maximum likelihood techniques to estimate the unknown parameters. The most intuitive way to
cregte the likelihood function for the integrated model is to start with the likelihood of a choice model
without latent variables:

P(Y, [X::0,S,) . [3-5]

The choice mode can be any number of forms, for example, logit, nested logit, probit, ordina probit, logit
kerndl, etc., and can include the combination of different choice indicators such as stated and reveaed
preferences.

Now we add the latent variables to the choice model. Once we hypothesize an unknown latent construct,
X, its associated distribution, and independent error components (w,,, €, ) , the likelihood function isthen
the integral of the choice model over the distribution of the latent constructs:

P(y, | X,;b,1,S,.§) = QP (Y | X, X030, S) (X7 [ X518, )dX” . [3-6]

X

We introduce indicators to both improve the accuracy of estimates of the structural parameters as well as
to alow for their identification. Assuming the error components (w, , e, ,U ) are independent, the joint
probability of the observable varigbles y, and |, conditional on the exogenous variables X, , is:

f,(y., L |X:a,b,1,S,,S,.S,)= [3-7]

OP (Y I X, X730, S0) 5 (1, | X, X2, §,) (X7 [ X518, )dX

X

Note that the first term of the integrand corresponds to the choice model, the second term corresponds to
the measurement equation from the latent variable model, and the third term corresponds to the structural
equation from the latent variable model. The latent variable is only known to its distribution, and so the joint
probability of y_, | ,and X' isintegrated over the vector of latent constructs X .
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Functional Forms

The forms of the variables (for example, discrete or continuous) and assumptions about the disturbances
of the measurement and structural equations determine the functiona forms in the likelihood equation.
Frequently we assume linear in the parameter functional forms, and disturbances that have normal (or
extreme vaue for the choice model) distributions.

The choice modd portion of the likelihood function is a standard choice model, except that the utility isa
function of latent constructs. The form of the probability function is derived from Equations [3-2] and [3-4]
and an assumption about the distribution of the disturbance, e,,. For example, for a choice of dternative i :

U, =V, +e adV,_ =V (X ,X:b), il C, C, isthechoiceset for individual.
P(Y, =11 X, X,ib,S,) =P, 2 U,,," T C,)

= P(Vin *t&, 3an +ejn1" JT Cn)

=P(e,,- &, EV,- V,,,"iT C)).

jn?

If the disturbances, e, arei.i.d standard Gumbel, then:

Vi

P(y,, =1 X, X b) = oe mv, : [Logit Model]
a e n
fic,
Or, in abinary choice situation with normaly distributed disturbances:
P(Yi, =11 X,, X3 0) = F (V- V), [Binary Probit Model]

where F isthe standard norma cumulative distribution function

The choice model can take on other forms. For example, ordina categorica choice indicators would result
in either ordinal probit or ordind logistic form (for example, see Case Study 3), or the logit kernel model
presented in Chapter 2 can be used.

The form of the distribution of the latent variables is derived from Equation [3-1]; the form of the
digtribution of the indicators is derived from Equation [3-3]. The disturbances of the structural and
measurement equations of the latent variable model are often assumed to be normally and independently
distributed. Thus the latent variables are assumed to be orthogondl, i.e., the indicators are assumed to be
conditionaly (on X and X, ) independent. In this case, the resulting densities are:

IL * - . C')
£ IX 0 s,)=0 1 gxm h(X,il)0
1=1 T

Wi

92



X B - " 0]
0, 1%, X a,8,) = QO ot o MXaXeid )2,
2s, € s, 5
where: f isthe standard normal density function;
S, S, aethestandard deviations of the error terms of u,, and w, , respectively;

R isthe number of indicators; and

L isthe number of latent variables.

Itistrivia to remove the orthogondity assumption for the latent variables by specifying afull covariance
structure for w,, (and by estimating the Cholesky decomposition of this matrix).

Both the indicators and the latent variables may be either discrete or continuous. See Gopinath (1995) and
Ben-Akiva and Boccara (1995) for details on the specification and estimation of models with various
combinations of discrete and continuous indicators and latent constructs. The case of discrete latent
variables (i.e., latent class models) is covered in Chapter 4.

Theoretical Analysis

The methodology presented here improves upon the techniques described by Figure 3-1 through Figure
3-4.

Figure 3-1 - Omitting important latent variables may lead to mis-specification and inconsistent estimates
of al parameters.

Figure 3-2 - A priori, we reject the use of the indicators directly in the choice model — they are not
causa, they are highly dependent on the phrasing of the survey question, there can be multicollinearity
issues, and they are not available for forecasting.

Figure 3-3a - The two-stage sequentia approach without integration leads to measurement errors and
results in inconsistent estimates.

Figure 3-3b - The two-stage sequentia approach with integration results in consistent, but inefficient
estimates. Furthermore, note that since the choice model involves an integral over the latent variable, a
canned estimation procedure cannot be used. Therefore, there is no significant advantage to estimating the
mode sequentialy.

Figure 3-4 - The choice and latent variable model without indicators is restrictive in that the latent
variables are aternative-specific and cannot vary among individuals.

In summary, the approach we present is theoretically superior: it is a generalization of Figure 3-1 and
Figure 3-4 (so cannot beinferior) and it is datistically superior to sequential methods represented by Figure
3-3. How much better is the methodology in a practical sense? The answer will vary based on the model
and application at hand: in some cases it will not make a difference and, presumably, there are casesin
which the difference will be substantial.
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Identification

Aswith dl latent variable models, identification is certainly an issue in these integrated choice and latent
variable models. While identification has been thoroughly examined for special cases of the integrated
framework presented here (see, e.g, Elrod 1988 and Keane 1997), necessary and sufficient conditions for
the general integrated model have not been developed. Identification of the integrated models needs to be
analyzed on a case-by-case basis.

In generdl, dl of the identification rules that apply to atraditional latent variable model are applicable to the
latent variable model portion of the integrated model. See Bollen (1989) for a detailed discussion of these
rules. Similarly, the normalizations and restrictions that apply to a standard choice model would aso apply
here. See Ben-Akiva and Lerman (1985) for further information.

For the integrated model, a sufficient, but not necessary, condition for identification can be obtained by
extending the Two-step Rule used for latent variable models to a Three-step Rule for the integrated
modd:

1. Confirm that the measurement equations for the latent variable modd are identified (using, for
example, standard identification rules for factor analysis models).

2. Confirm that, given the latent variables, the structural equations of the latent variable modd are
identified (using, for example, standard rules for a system of simultaneous equations).

3. Confirm that, given the latent variables, the choice modd isidentified (using, for example, standard
rules for a discrete choice modd).

An ad-hoc method for checking identification is to conduct Monte Carlo experiments by generating
synthetic data from the specified model structure (with given parameter values), and then attempt to
reproduce the parameters using the maximum likelihood estimator. If the parameters cannot be
reproduced to some degree of accuracy, then this is an indication that the model is not identified.

Another useful heuristic is to use the Hessian of the log-likelihood function to check for local identification.
If the modd islocaly identified at a particular point, then the Hessian will be positive definite at this point.
The inverse Hessian is usually computed at the solution point of the maximum likelihood estimator to
generate estimates of the standard errors of estimated parameters, and so in this case the test is
performed automatically. (See Chapter 4 for more discussion.)

Estimation

Maximum likelihood techniques are used to estimate the unknown parameters of the integrated model. The
model estimation process maximizes the logarithm of the sample likelihood function over the unknown
parameters:

N
arfg’alxsgllnh(yn,ln |X,;a,b,l ,S). .
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The likdihood function includes complex multi-dimensiond integras, with dimensiondity equa to that of
the integrd of the underlying choice modd plus the number of latent variables. There are three basic ways
of estimating the model: a sequential numerical approach, a simultaneous numerical approach, and a
smulation gpproach.

The sequentia estimation method involves first estimating the latent variable modd (Equations [3-1] and
[3-3]) using standard latent variable estimators. The second step is to use fitted latent variables and their
distributions to estimate the choice modd, in which the choice probability is integrated over the
distribution of the latent variables.” The two step estimation method results in consistent, but inefficient
estimates. See McFadden (1986), Train et a. (1986), and Morikawa et d. (1996) for more details on the
sequential approach.

An important point is that a sequentia estimation procedure that treats the fitted latent variables as non-
stochadtic variables in the utility function introduces measurement error and results in inconsistent
estimates of the parameters. If the variance of the latent variable’ s random error (W ) issmall, then
increasing the sample size may sufficiently reduce the measurement error and result in acceptable
parameter estimates. Increasing the sample size results in a more precise estimate of the expected value
of the latent variable, and a small variance means that an individua’s true value of the latent variable will
not be too far off from the expected value. Train et a. (1986) found that for a particular model (choice of
electricity rate schedule) the impact of the inconsistency on parameter estimates was negligible using a
sample of 3,000 observations. However, this result cannot be generalized; the required size of the dataset
is highly dependent on the model specification, and it requires that the variance of the latent variable’'s
error (W) be sufficiently small. Note that the sample size has no effect on the variance of w . In other
words, the measurement errors in the fitted latent variables do not vanish as the sample size becomes very
large. Therefore, without running tests on the degree of inconsistency, it is a questionable practice to
estimate these integrated choice and latent variable models by chaining a canned latent variable model
software package with a canned choice model package. Performing these tests requires integration of the
choice model.

The inconsistency issue already makes application of the sequential estimation approach quite complex,
and it produces inefficient estimates. Alternatively, afully efficient estimator can be obtained by jointly
estimating Equations [ 3-1] through [3-4]. Thisinvolves programming the joint likelihood function (Equation
[3-8]) directly in aflexible estimation package (for example, Gauss), which, idedly, has built in numerica
integration procedures. This is the method that is used in the second and third case studies reviewed in this
chapter.

The dimensiondities of the likelihoodsin all three of the reviewed case studies are such that numerical
integration is feasible and preferred. However, as the number of latent variables increases (and therefore
the dimension of the integral increases), numerical integration methods quickly become infeasible and
simulation methods must be employed. Typical estimation approaches used are Method of Simulated

25
Note that technically this distribution should & so include the estimation error from the parameter estimates.

95



Moments or Maximum Simulated Likelihood Estimation, which employ random draws of the latent
variables from their probability distributions. For illustration purposes, consider the use of maximum
simulated likelihood for the model that we later review as Case Study 1. Thisis a binary choice (probit)
modd with 2 latent variables (assumed to be orthogonal) and six indicators (see the Case Study for further
details). The likelihood function is as follows:

fa(¥n: ln 1X57a,0,9,9) = (00 F{Ya(X,b, +Z'b,)}*

5 é -zal 2 6z - X |, U_.
Al fu-Zal & 1, 82-%)8,.
TS, 8 S, 0O aS. 8 Su 4§

Note that since thisis only adouble integrd, it is actualy more efficient to estimate the model using
numerical integration (as in the case studies that are reviewed later). However, the model serves well for
illustration purposes.

Typicaly, the random draws are taken from a standard multivariate norma distribution (i.e., ~ N(0,1))
distribution, so we re-write the likelihood with standard normal disturbance terms for the latent variable
structura equation as follows:

Z, =X, +w, , 1=1,2, w, ~N(0,S, diagonal) ,
w,, =s W, , where W,, ~ N(0,2) .
The likelihood is then written as;

f4(yn1 In | Xn;a’b’ l 1S) = dDF{yn(anl_{_ (an 1 +Swlwl)b12 + (an 2 +SW2W2)b22)}*

3l - (X LS Way - (X1, +s, W), g* 2 ¢

n

(W, )i .
Sy, g =
To simulate the likelihood, we take D random draws from the distributions of W, and W, for each
observation in the sample, denoted van and wgn, d=1,...,D. Thefollowing isthen an unbiased smulator

for f,(y,, || X,a,b,l,S):

f(yo, 11 X,;a,b,1,9) =

121 N .
ﬁé ,:,\ F{ yn(xnbl + (an 1 +Sw1an)b12 + (xnl 2 +Sw2Wgn)b22)}
d=1
*6 1 f glrn - (xnl 1 +Swlv~\fn)a]r - (anz +Sw2\7\§n)32rg y .
r:lsur @ Sur g b

The parameters are estimated by maximizing the smulated likelihood over the unknown parameters:

96



N ~
ar’rg,al>'<séllnf4(yn,ln |X;a,b,1,S) .

Note that, by Jensen’s Inequality, (In f4) isabiased estimator of (In f,) though consistent by the Sutsky
theorem. When a small number of draws is employed, this results in a non-negligible bias in the parameter
estimates. Therefore, one has to verify that a sufficient number of drawsis used to reduce thisbias. This
is usualy done by estimating the model using various number of draws, and showing empirically that the
parameter estimates are stable over a certain number of draws. This issue was discussed more thoroughly
in Chapter 2.

For more information on simulation methods for estimating discrete choice models, see McFadden (1989)
and Gourieroux and Monfort (1996).

Model Application

The measurement equations are used in estimation to provide identification of the latent constructs and
further precision in the parameters estimates for the structura equations. For forecasting, we are
interested in predicting the probability of the choice indicator, P(y, |X,;a,b,1,S) . Furthermore, we do
not have forecasts of the indicators, | . Therefore, the likelihood (Equation [3-7]) must be integrated over
the indicators. Thisintegration trivialy leads to the following modd structure, which is what is used for
application:

P(y, IXy;a,b,1,8) = QP(y, IX,. X;:b,S) (X[ X1, §,)dX". [3-9]
e

Once the mode is estimated, Equation [3-9] can be used for forecasting and there is no need for latent
variable measurement models or the indicators. Typicaly, the latent variable structural model is substituted
into Equation [3-9], and the function is then smply a choice mode integrated over the distribution of the
latent variable disturbances, w .

Reviewed Case Studies

The unique features of the integrated choice modeling framework are demonstrated by reviewing three
case studies from the literature. For each case study, the original source, the problem context, a problem-
specific modeling framework, survey questions, model equations, and results are presented. The models
from the original sources were re-framed (and in some cases simplified) using the terminology, notation,
and diagram conventions (including the creation of the full-path diagrams) used in this chapter.

The Role of the Case Studies

These case studies have been assembled from a decade of research investigating the incorporation of
attitudes and perceptions in choice modeling. The review of the case studies provide conceptua examples
of model frameworks, along with some specific equations, estimation results, and comparison of these
models with standard choice models. The aim is to show that the methodology is practical, and to provide
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concrete examples. The reviewed case studies emphasize the general nature of the approach by providing
likelihood functions for a variety of mode structures, including the use of both SP and RP data, the
introduction of an agent effect, and the use of logit, probit, and ordinal probit.

Model Estimation

The dimensionalities of the likelihoods in each of the three case studies were smal enough such that
numerical integration was feasible and preferred over simultaneous estimation techniques. Therefore,
numerical integration was used in al three studies. The first reviewed case study was estimated
sequentialy (accounting for the distribution of the latent variable), resulting in consistent, inefficient
estimates of the parameters. In the second and third reviewed case studies, the latent variable and choice
models were estimated jointly, resulting in consistent, efficient estimates. |dentification was determined via
gpplication of the Three-step Rule as described earlier, as well as using the inverse Hessian to check for
local identification at the solution point.

Additional References

Applications of the integrated approach can be found in Boccara (1989), Morikawa (1989), Gopinath
(1995), Bernardino (1996), Borsch-Supan et d. (1996), Morikawa et a. (1996), and Polydoropoulou
(1997). A joint choice and latent variable is also presented in Chapter 4.

Case Study 1: Mode Choice with Latent Attributes

The first case study (Morikawa, Ben-Akiva, and McFadden, 1996) presents the incorporation of the latent
congtructs of convenience and comfort in a mode choice model. The model uses data collected in 1987 for
the Netherlands Railways to assess factors that influence the choice between rail and car for intercity
travel. The data contain revealed choices between rail and auto for intercity trips. In addition to revealed
choices, the data also include subjective evaluation of trip attributes for both the chosen and unchosen
modes, which were obtained by asking questions such as those shown in Table 3-1. The resulting
subjective ratings are used as indicators for latent attributes. It is presumed that relatively few latent
variables may underlie the resulting ratings data, and two latent variables, ride comfort and convenience,
were identified through exploratory factor analysis.

Figure 3-7 presents the framework for the mode choice model. The revealed choice is used as an indicator
of utility, and the attribute ratings are used as indicators for the two latent variables. Characteristics of the
individual and observed attributes of the aternative modes are exogenous explanatory variables. Figure 3-8
provides afull path diagram of the model, noting the relationships between each variable.
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Table 3-1: Indicators for Ride Comfort and Convenience

Please rate the following aspects for the auto trip:

Relaxation during the trip
Reliability of the arrival time
Flexibility of choosing departure time

Ease of traveling with children and/or heavy baggage

Safety during the trip
Overall ratina of the mode

Very poor .......

P RRPRR PR
NN NN

............ very good
3 4 5
3 4 5
3 4 5
3 4 5
3 4 5

10

Charact. of the
Traveler S and
Attrib. of the Modes Z

N

|
|
v

Ride Comfort Zl
Convenience Z

Revealed
Preference y
(Chosen Mode)

——>

*

2

Indicators of Ride
Comfort and
Convenience | .

Figure 3-7: Modeling Framework for Mode Choice with Latent Attributes
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Figure 3-8: Full Path Diagram for Mode Choice Model with Latent Attributes
(SeeTable 3-2 and the model equations for notation.)

The mode choice model with latent attributes is specified by the following equations. All variables,
including the latent variables, are measured in terms of the difference between rail and auto. This was
done to reduce the dimensiondity of the integral (from 4 to 2), and was not necessary for identification of
the joint choice/latent variable modd.

Structural Model
Z =Xl +w,_, =12, w,~N(0,S, diagonal), {2 equations}

(1X1) (1X10)(10X1) (1X1)

U =Xb+Zb,+e ,e ~N(OJ . {1 equation}

(1X1) (1X10)(10X1) (1X2)(2X1) (1X1)
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Measurement Model

|, =Za, +u,, r=1,..6, u,~N(0,S, diagonal), {6 equations}

rn?

(1X1) (1X2)(2X1) (1X1)

i 1ifu, >0
n— |

. 1 equation
1-1ifU_£0 {1 eqetion}

(1x1) (1x1)

Note that the covariances of the error terms in the latent variable structural and measurement model are
constrained to be equal to zero (denoted by the “S diagonal” notation).

Likelihood function
FOn 11 X5a,b,1,8) =g F{y.(X,b; +Z b,)}*

Results

The parameters to be estimated include: b (9 parameters estimated), a (8 parameters estimated, 2
parameters constrained to one for identification, 2 parameters constrained to zero based on exploratory
factor andysis), u, ~ N(0,S, diagonal) (8 parameters estimated), and the standard deviations s , (6
parameters) and s, (2 parameters), where the covariances of the latent variable equations are restricted
to zero. Unless otherwise noted, parameters were set to zero based on statistical tests and a priori
hypotheses regarding the behavior. All parameters except the variances are reported.

The results are shown in Table 3-2. Estimation was performed via a sequentia estimation procedure that
is described in Morikawa et a. (1996). The dataset included 219 observations. The top panel displays the
estimation results of two different choice models: the second column is the choice model without the latent
variables, and the first column is the choice model with the latent variables. The integrated choice and
latent variable model consists of the choice model with latent variables (the first column of the upper
panel) and the latent variable mode (displayed in the lower panel of Table 3-2). The table for the latent
variable model displays the estimation results of both the structural and measurement equations for each of
the two latent variables comfort (the first column) and convenience (the second column). The latent
variable model is made up of many equations. one structural equation for comfort, one structural egquation
for convenience, and six measurement equations for comfort and convenience.

Both of the latent attributes have significant parameter estimates. Inclusion of the latent attributes
identified by the linear structural equation resulted in alarge improvement in the goodness-of -fit of
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Table 3-2: Esimation Results of M ode Choice M odel with Latent Attributes

CHOICE MODEL

WITHOUT Latent

WITH L atent Attributes| Attributes

Explanatory Variables Est.b t-stat Est. b t-stat
X10 Rail constant 0.32 1.00 0.58 2.00
X9  Cost per person -0.03 -4.10 -0.03 -4.20
X3  Line-haul time 0.08 0.20 -0.41 -1.60
X6  Terminal time -1.18 -2.60 -1.57 -4.20
X5  Number of transfers -0.32 -1.70 -0.20 -1.30
X8  Business trip dummy 1.33 3.60 0.94 3.60
X7  Femaledummy 0.65 2.60 0.47 2.30
Z1* Ride comfort (latent) 0.88 270 - e
Z2* Convenience (latent) 1.39 410) @ e oeeee-

Rho-bar-Squared 0.352 0.242
LATENT VARIABLE MODEL

Structural Model Comfort Z1* Convenience Z2*

(2 equations total, 1 per column) Est. |1 t-stat Est. |2 t-stat
X2 Aage>40 -0.23 -1.40 0.41 3.30
X1  First classrail rider 0.29 100 - -
X3  Linehaul travel time (rail-auto) -0.29 130 - e
X6 Terminad time(rail-auto) | - e -0.52 -2.10
X5  Number of transfersbyrail | - e -0.05 -0.60
X4  Availability of freeparkingforauto | = - -eeee- 0.16 1.60
X11 (Age>40) * (Line haul travel time) -0.04 -010] e eeeee-

Measurement Model Comfort Z1* Convenience Z2*

(6 equations total, one per row) Est. 81 t-stat Est. 82 t-stat
11 Relaxation durina trip 1.00 - 0.17 0.80
12 Reliability of the arrival time 0.77 1.80 1.00 -
15 Flexibility of choosina departuretime | = —=--— 1.49 4.30
16 Ease of traveling with children/baggage | - - 1.16 1.16
13 Safetv durina the trin 0.69 3.10 0.33 2.00
14 Overall rating of the mode 1.64 2.60 2.43 5.90
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the discrete choice model. The rho-bar-squared for the model with latent attributes uses a degree-of -
freedom correction involving two variables beyond those used in the model without latent variables, and
thus this degree of freedom adjustment only accounts for the estimated parameters of the choice model.
Note that some of thisimprovement in fit would probably be captured in the choice model by including in
the base choice modd the additional variables that are included in latent variable structura modd.

While the indicators used for comfort and convenience in this case study are adequate, the structural
equations are not particularly strong because of the limited explanatory variables available for comfort and
convenience. In generd, it can be difficult to find causes for the latent variables. This issue needs to be
thoroughly addressed in the data collection phase.

Note that numerous variations on this model are presented in Chapter 4.

Case Study 2: Employees’ Adoption of Telecommuting

The second case study (Bernardino, 1996) assesses the potential for the adoption of telecommuting by
employees. Figure 3-9 presents the modeling framework. The behaviora hypothesisis that an employee
faced with atelecommuting arrangement will assess the impact of the arrangement on lifestyle, work-
related costs and income, and then decide whether to adopt telecommuting. Telecommuting is expected to
influence lifestyle qudity by providing the employee with the benefit of increased flexibility to adjust work
schedule, workload, personal needs, and commuting patterns. The perceived impact is expected to vary
according to the characteristics of the individua and of the program. Telecommuting is also expected to
impact household expenditures, such as utilities, equipment, day care, and transportation. Figure 3-10
provides afull path diagram of the model, noting the relationships between each variable.

The employee' s decision to adopt a telecommuting program in a smulated choice experiment is modeled
as afunction of her/his motivations and congtraints, as well as the impacts of the available program on
lifestyle quality, work-related costs, and income. Changes in income are included in the telecommuting
scenarios, while latent constructs of benefit (i.e., enhancement to lifestyle quality) and cost are estimated.
To obtain indicators for benefit, respondents are asked to rate the potential benefits of the telecommuting
program on ascale from 1 to 9 as shown in Table 3-3. These responses provide indicators for the latent
variable model. The latent cost variable is manifested by the employees’ responses to questions about the
expected change in home office costs, child and elder care costs, and overall work-related costs as shown
in Table 3-4. The employee is assumed to have a utility maximization behavior, and thus will choose to
adopt a particular telecommuting option if the expected change in utility is positive. This decision is
influenced by the characteristics of the arrangement, the individual’ s characteristics and situational
congtraints, and the perceived benefits and costs of the arrangement.

103



Charact. of the EmployeeS
and Attributes of the
Telecommuting ProgramZ

CostZ;
and BenefitsZ *
of Program

Indicators of Costl,,
and Benefitl,,

Stated Participation
————p Decisiony
(Participate or not)

Figure 3-9:
Modeling Framework for Employee’ s Adoption of Telecommuting

The adoption of telecommuting model is specified by the following equations.

Structural Model
Z, =X, +w,, , 1=1,2, w,~N(0,S, diagonal) , {2 equations}
(1X1) (1X14)(14X1) (1X1)
U,=Xb,+Zb,+e, , e ~standard logistic. {1 equation}

(1X1) (1X14)(14X1) (1X2) (2X1) (1X1)

Measurement Model”
|, =Za, +u,_ , r=1..14, u, ~ N(0,S, diagonal), {14 equations}

(1X1) (1X2)(2X1) (1X1)

y =t ift T <URP £t {1 equation}

n

(1X1) (IX1)

26

Note that the indicators for the cost latent variable were on a 3-point scale and therefore the specified measurement equations
are actualy discrete equations. We write them as linear here to simplify the presentation. See Bernardino (1996) for the actual
discrete equations.
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Likelihood Function
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Table 3-3: Indicator s of Benefit

What type of impact would you expect the telecommuting arrangement to have on:

extremely..................... extremely

negative..........coovevevennnnn positive
Your schedule flexibility 1 2 3 4 5 6 7 8 9
Your productivity 1 2 3 4 5 6 7 8 9
Your autonomy in your job 1 2 3 4 5 6 7 8 9
The productivity of the group you work with 1 2 3 4 5 6 7 8 9
Your family life 1 2 3 4 5 6 7 8 9
Your social life 1 2 3 4 5 6 7 8 9
Your job security 1 2 3 45 6 7 8 9
Your opportunity for promotion 1 2 3 45 6 7 8 9
Your sense of well being 1 2 3 4 5 6 7 8 9
Your job satisfaction 1 2 3 4 5 6 7 8 9
Your life. overall 1 2 3 4 5 6 7 8 9

Table 3-4: Indicator s of Cost

How would you expect the telecommuting arrangement to impact your expenditures on:

home utilities: ( ) decrease ( ) remain the same () increase
child care: ( ) decrease ( ) remain the same () increase
elder care: ( ) decrease ( ) remain the same () increase
overall workina costs: ( ) decrease ( ) remain the same ( Yincrease
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Figure 3-10:
Full Path Diagram for Model of Employee's Adoption of Telecommuting
(See Table 3-5 and the model equations for notation.)
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Results

The parameters to be estimated include: b (5 parameters estimated), a (13 parameters estimated, 1
parameter constrained to one for identification), | (11 parameters etimated), and the standard deviations
S, (14 parameters estimated) and S, (2 parameters: the benefit parameter is estimated, the cost
parameter is constrained for identification rather than constraining an a ), where the covariances of the
latent variable equations are restricted to zero. Unless otherwise noted, parameters were set to zero based
on dtatistical tests and a priori hypotheses about the behavior.

The estimation results are shown in Table 3-5 (estimated variances of the disturbance terms are not
reported). The mode was estimated using observations from 440 individuas and employed a s multaneous
numerical integration estimation procedure. The top pand displays the results of the choice mode, which
includes the latent explanatory variables benefit and cost. The lower pand displays the results for the
latent variable model. The latent variable model consists of many equations: a structural equation for
benefit, a structural equation for cost, 11 measurement equations for benefit (one equation per row), and 3
measurement equations for cost (again, one equation per row).

This model of the employee’ s adoption decision contains more information and allows for a clearer
behaviora interpretation than standard choice models. It demonstrates the impact of different
telecommuting arrangements on the employee’ s lifestyle and work-related costs, as a function of the
employee's characteristics and situational constraints. The results indicate that females and employees
with young children perceive a higher beneficial impact from telecommuting on lifestyle quality than their
counterparts. Note that unlike the other two case studies reviewed in this chapter, a survey was conducted
that was designed specificaly for this model, and, as a result, the structural models are quite strong with
solid causal variables. For more information on these models and other models for telecommuting behavior,
see Bernardino (1996).
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Table 3-5: Estimation Results of a Telecommuting Choice Model

with Latent Attributes

CHOICE MODEL

Exnlanatarv Variables Eg b t-stat
X8  Telecommutina soecific constant 2.02 8.94
X9 Hinher salarv to telecommiiters (relative to 'same 0.50 112
X10 | ower salarv to telecommiiters (rel ative to 'same’) -2.36 -R.78
Z1* Benefit (latent variable) 0.99 7.01
Z2*  Codt (latent variable) -0.37 -3.12

Rho-bar-Sauared 035
LATENT VARIABLE MODEL

Sructural Model for Benefits 71* (1 equation) Est g t-stat
X1  Min# of telecommutina davs/week -0.15 -6.65
X2 Max # of telecommiitina davshweek * team striictiire diimmv n10 202
X3 Max # telecommittina davsiweek * individiial gtriictire diimmy -004 -199
X4  Telework center telecommutina dummv -1.02 -14.75
X5 Travd time * female diimmv 0 R 747
X6 Travel time* male diimmv no>7 21

11 Social life 0.59 11.61
12 Familv life 0.80 1837
13 Onnartinitv for ioh nromation 032 6.19
14 Job securitv 0.41 8.15
15 Schedille flexihilitv 076 14.40
16 Joh ailtonomv 0.60 1251
I7  Your Productivitv 0.92 20.87
18 Grotn nroductivity 0.61 12.43
19 Sense of weall heina 1.04 24 86
110  Job satisfaction 1.07 24.84
111 Lifeoveral 100 -—---
Sructural Model for Cost Z2* (1 equation) Est | 2 t-stat
X11 Day care costs proxy 0.39 2.00
X12 Home office utilities proxy -0.36 -2.70
X13 Equipment costs 0.76 2.50
X14 Weekly transportationcosts I 065 291
Sauared multinle correlation for structural equation 021
Measurement Model for Cost Z2* (3 equations) Est a2 t-gat
112 Day care costs 0.37 4.78
113 Home office utilities costs -0.11 -3.07
114 OQverall workina costs 0.50 3.63
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Case Study 3: Usage of Traffic Information Systems

The objective of the third case study (Polydoropoulou, 1997) isto estimate the willingness to pay for
Advanced Traveler Information Systems. The model uses data collected for the SmarTraveler test market
in the Boston area. SmarTraveler is a service that provides real-time, location-specific, multi-modal
information to travelers via telephone.

Figure 3-11 shows the framework for the model, which includes a latent variable of satisfaction as an
explanatory variable in the usage decision. Travelers' satisfaction ratings of SmarTraveler are used as
indicators of the satisfaction latent construct. Table 3-6 shows the survey questions used to obtain ratings
of satisfaction. The model assumes that each traveler has an underlying utility for the SmarTraveler
sarvice. The utility isafunction of the service attributes such as cost and method of payment, as well as
the overall satisfaction with the service. Since utility is not directly observable, it is alatent variable, and
the responses to the alternate pricing scenarios serve as indicators of utility. Respondents were presented
with several pricing scenarios, and then asked what their usage rate (in terms of number of calls per
week) or likelihood of subscribing to the service would be under each scenario. Two types of scenarios
were presented: a‘measured’ pricing structure in which travelers are charged on a per call basis
(corresponds to SP1 responses) and a ‘flat rat€’ pricing structure in which travelers pay a monthly
subscription fee (corresponds to SP2 responses). Travelers' reveaed preference for free serviceis
reflected by the actua usage rate, which serves as an additional indicator of utility. Figure 3-12 provides a
full path diagram of the model, noting the relationships between each variable in the modd!.

Charact. of the
Customer Sand
Attrib. of the Service Z

.

Indicators of
Satisfaction I,

Satisfaction Z*

Stated Preferences:
————— »  Usage Rate of Service yS™*
Likelihood of Subscription y™2

I
v

Revealed Preference:
Usage Rate of Free Service

yRP

Figure 3-11:
M odeling Framework for Usage of Smar Traveler
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(M SP1 scenarios)

(Q SP2 scenarios)

Figure 3-12:
Full Path Diagram for Model of Usage of Smar Traveler
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(See Table 3-7 and model equations for notation.)
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Table 3-6: Indicator s of Satisfaction with Smar Traveler Service

Please rate your level of satisfaction with the following aspects of the
existing SmarTraveler service.

extremely.............ooveven . extremely

dissatisfied...............ccceenes satisfied
Ease of use 1 2 3 4 5 6 7 8 9
Up to the minute information 1 2 3 4 5 6 7 8 9
Availability on demand 1 2 3 4 5 6 7 8 9
Accuracy of information 1 2 3 4 5 6 7 8 9
Level of detail of information 1 2 3 4 5 6 7 8 9
Provision of alternate routes 1 2 3 45 6 7 8 9
Hours of operation 1 2 3 45 6 7 8 9
Coverage of major routes 1 2 3 4 5 6 7 8 9
Cost of service 1 2 3 4 5 6 7 8 9
Overall satisfaction withservice 1 2 3 4 5 6 7 8 9

All of the choice variables are ordina categorical, and therefore ordina probit choice models are used.
The revealed preference choice (YT ) and the stated usage rate (y>*) can take on the fallowing values:

i1, if lessthan 1 call per week
_{2, if 1to 4 calls per week
Yo _-:- 3, if 5to 9 calls per week
{4, if more than 9 calls per week

The stated likelihood of subscription (y?) can take on the following values:

i1, if very unlikely to subscribe
B { 2, if somewhat unlikely to subscribe
" 13, if somewhat likely to subscribe
{4, if very likely to subscribe

Y

The following equations specify the model of SmarTraveler usage.

Structural Model
Z =X®l +w_,w, ~N(@,s?) , {1 equation}

(1X1) (1X13)(13X1) (1X1)

Utility equations: {1+M+Q equations}
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U =V +6% =XTb, +Z b, +e) +e, e, ~N(@2),

SP1 _\/SP1 5PL _ SP1 * N SP1 SP1 2 —
U, =V, té, =X, b, +ZDb,+e +e.", e, ~N@Osg,). m=1..M,
SP2 _\ /SP2 ~SP2 _ SP2 * N P2 SP2 2 _
Up =V, *+€, =X, b+Zb,+¢ +e,", en ~NOsg,), 9=1.,Q,
(1X1) (1X13)(13X1) (IX1)(1X1) (1X1) (1X1)
where: m denotes a particular measured rate scenario, and

g denotes a particular flat rate scenario.

The disturbance in the utility equations, €,,, are made up of 2 components: a respondent-specific
component and a dataset/scenario specific component. The random disturbance characterizing each
respondent, eg‘ , Isconstant for any respondent across pricing scenarios, and captures the correlation
among responses from the same individua (an “agent effect”). The assumed distribution for the agent
effectis e ~N(0,s2).

Measurement Model

|,,=Za, +u,,r=1..10, u ~N(0,S, diagonal) , {10 equations}
(1X1) (IX1)(1X1) (1X1)

ye =t ift T <UF £1.57, t=1,...,4,

yrt=t, ift T <UTTEL T t=1,...,4, m=1..,M,
Yoo =t, ift 57 <US? £1.77, t=1,..,4, q=1...Q,

t are unknown threshold parameters, with t , =- ¥ , t, =0 (for identification), t , =¥ .

Additional Notation
re_ 1L iy =t
=1 . 1]
" 10, otherwise

e 1L ifynt=t

=i . ,and
™ 10, otherwise
w2 _ 11, ifycijz =t
10, otherwise
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Results

The parameters to be estimated include: b (9 parameters estimated), a (9 parameters estimated, 1
parameter constrained to 1 for identification), | (5 parameters estimated), the threshold parameterst
and the standard deviations s , (10 parameters), s, (1 parameter), S o, (1 parameter), S o, (1
parameter), s (1 parameter), where s o, was constrained to 1 for identification and the covariances of
the latent variable equations are restricted to zero. Unless otherwise noted, parameters were set to zero
based on statistical tests and a priori hypotheses about the behavior.

Table 3-7 shows the estimation results for this model (estimated threshold parameterst , and variances of
the error terms are not reported). The model was estimated using observations from 442 individuas, al of
whom are SmarTraveler users, and a simultaneous numerical integration estimation procedure. Results of
two choice models are presented: one without the satisfaction latent variable (the right column of the top
panel) and one that includes the satisfaction latent variable (the left column of the top panel). The
integrated choice and latent variable model consists of the choice model with the satisfaction variable and
the latent variable model (one structural equation and 10 measurement equations).

The incorporation of satisfaction in the utility of SmarTraveler modd significantly improved the goodness
of fit of the choice model. Note that some of thisimprovement in fit would probably be captured in the
choice model by including in the base choice modd the additiona variables that are included in latent
variable structural model. The rho-bar-squared for the moded with latent attributes uses a degree-of -
freedom correction involving one variable (for the satisfaction latent variable) beyond those used in the
model without the latent variable, and thus this degree of freedom adjustment only accounts for the
estimated parameters of the choice moded. See Polydoropoulou (1997) for additional model estimation
results for this model, and for additional models of behavior regarding SmarTraveler.
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Table 3-7: Estimation Results of ATIS Usage M odel with Latent Satisfaction

CHOICE MODEL

WITHOUT the
WITH the Satisfaction Satisfaction Latent
Utilitv of SmarTraveler Service | atent Variable Variable
Explanatory Variables Est. b t-stat Est. b t-stat
X6 Constant for actual market behavior 0.94 5.20 0.97 5.90
X4 Constant for measured service 0.56 3.90 0.59 4.30
X7 Constant for flat rate service 0.10 0.70 0.11 0.80
X5 Priceper call (cents/10) -0.31 -15.90 -0.31 -15.80
X8 Subscription fee ($/10) -1.29 -15.50 -1.27 -16.30
X1 Income: $30,000-$50,00C 0.02 0.10 0.15 1.00
X2 Income: $50.001-$75.00C 0.32 2.10 0.37 2.60
X3 Income: >$75.000 0.35 2.40 0.22 1.60
Z* Satisfaction | atent Variable 0.16 4500  eeeem oo
Rho-bar-Squared 0.65 0.49
LATENT VARIABLE MODEL
Sructural Model (1 equation) Est. | t-stat
X9 Gender (male dummy) -0.19 -2.40
X10 NYNEX user -0.86 -10.50
X11 Cellular One user -1.08 -8.20
X12 Age: 25-45 years -0.26 -1.60
X13 Age: >45 years -0.24 -1.40
Squared multiple correlation for structural model 0104
R?
Measurement Model (10 equations) Est. 2 t-stat
11 Easeof use 0.46 7.80 0.15
12 Up to the minute information 1.26 21.60 0.64
I3 Availability on demand 0.47 8.2 0.18
14 Accuracy of information 1.19 23.10 0.69
I5 Leve of Detail of information 1.10 22.60 0.63
16 Suggestions of alternative routes 0.75 7.80 0.16
I7 Hoursof operation 0.57 7.40 0.13
I8 Coverage of major routes 0.59 12.60 0.25
19 Cost of service 0.19 5.30 0.06
110 Overall satisfaction with service 100 - 0.82
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Practical Findings from the Case Studies

In the case studies reviewed here, and in our other applications of the methodology, the general findings
are that implementation of the integrated choice and latent variable model framework resultsin:

Improvements in goodness of fit over choice models without latent variables, or, dternatively,
confidence that the ssimple choice model is adequately specified;

Latent variables that are statistically significant in the choice model, with correct parameter signs; and
A more satisfying behaviora representation.

Severa practical lessons were learned from our application of the methodology. Firgt, in terms of the
measurement equations [3-3], a sufficient number of indicators relevant to the latent variable under
consideration, as well as variability among the indicators, are critica success factors. Second, for the
structural equations [3-1], it can be difficult to find solid causal variables ( X ) for the latent variables. In
some cases, it is difficult to even conceptually define good causal variables, that is, cases in which there
are no good socioeconomic characteristics or observable attributes of the aternatives that sufficiently
explain the latent attitudes and/or perceptions. However, frequently it happens that even if one can define
good causal variables, these types of data have not been collected and are not included in the dataset. To
address both of these issues, it is critical for the successful application of this methodology to first think
clearly about the behavioral hypotheses behind the choices, then develop the framework, and then design
asurvey to support the model. The final major lesson is that these integrated models require both
customized programs and fast computers for estimation. The estimation programs and models tend to be
complex, and therefore synthetic data should be used to confirm the program’s ability to reproduce the
parameters as a matter of routine. Such a test provides assurance that the modd is identified and that the
likelihood is programmed correctly, but does not atherwise vaidate the model specification.

Conclusion

In this chapter, we presented a genera methodology and framework for including latent variables—in
particular, attitudes and perceptions—in choice models. The methodology provides a framework for the
use of psychometric data to explicitly model attitudes and perceptions and their influences on choices.

The methodology requires the estimation of an integrated multi-equation model consisting of a discrete
choice model and the latent variable model’s structural and measurement equations. The approach uses
maximum likelihood techniques to estimate the integrated mode, in which the likelihood function for the
integrated mode! includes complex multi-dimensiona integrals (one integral per latent construct).
Estimation is performed either by numerica integration or smulation (MSM or MSL), and requires
customized programs and fast computers.

Three applications of the methodology are presented. The findings from the reviewed case studies are that
implementation of the integrated choice and latent variable model framework results in: improvementsin
goodness of fit over choice models without latent variables, latent variables that are statisticaly significant
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in the choice model, and a more satisfying behavioral representation. Application of these methods
requires careful consideration of the behavioral framework, and then design of the data collection phase to
generate good indicators and causal variables that support the framework.

To conclude, we note that the methodology presented here and the empirical case studies that were
reviewed have merely brought to the surface the potential for the integrated modeling framework. Further
work is needed including investigation in the following aress.

Behavioral Framework: By integrating latent variable models and choice models, we can begin to reflect
behaviora theory that has here-to-for primarily existed in descriptive, flow-type models. The behaviora
framework and the methodology we present needs to be extended to continue bridging the gap between
behavioral theory and statistical models. For example, including memory, awareness, process, feedback,
temporal variables, tastes, goals, context, etc. in the framework.

Validation: The early signsindicate that the methodology is promising: the goodness of fit improves, the
latent variables are significant, and the behavioral representation is more satisfying. For specific
applications it would also be useful to conduct validation tests, including tests of forecasting ahlity,
consequences of misspecifications (for example, excluding latent variables that should be present), and
performance comparisons with models of smpler formulations.

I dentification: Other than the methods we present for identification (the Three-step Rule, the use of
synthetic data, and the evauation of the Hessian), there are no additional rules for identification of the
genera formulation of the integrated choice and latent variable models. Similar to the way that necessary
and sufficient rules were developed for LISREL, the knowledge base of identification issues for the
integrated model must be expanded.

Computation: Application of this method is computationally intensive due to the evauation of the integral.
Edtimation time varies significantly with the particular application, but is usualy on the order of afew
hours to severa days using, for example, a 500 plus MHz Pentium processor. Investigation of techniques
such as parallel computing, particularly for estimation by simulation, would greatly ease the application of
such models.

The approach presented in this chapter is a flexible, powerful, and theoreticaly grounded methodology that
will dlow the modeling of complex behavioral processes.
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Chapter 4

Generalized Discrete Choice Model

In this chapter, we present a generalized discrete choice model that synthesizes awide variety of
enhancements that have been made to the basic discrete choice paradigm. The model has the ability to
incorporate key aspects of behavioral realism and yet remains mathematically tractable. The chapter
begins by summarizing avariety of extensions, including those described in Chapters 2 and 3 aswell as
others, and then presents a generalized framework and specification. The basic technique for integrating
the methods is to start with the multinomial logit formulation, and then add extensions that relax Smplifying
assumptions and enrich the capabilities of the basic model. The extended models often result in functiona
forms composed of complex multidimensional integrals, and so a key part of the generalized modd isthe
implementation of the logit kernel smooth smulator described in Chapter 2. This chapter aso provides
empirical results that demonstrate and test the generalized discrete choice modeling framework.

Introduction

As described in the introductory chapter, researchers have long been focused on improving the
specification of the discrete choice modd. A guiding philosophy in these developmentsiis that such
enhancements lead to a more behaviorally realistic representation of the choice process, and consequently
a better understanding of behavior, improvements in forecasts, and valuable information regarding the
validity of smpler model structures. The objective of this chapter is to extend the basic discrete choice
model by integrating with it a number of extensions, including:

Factor Analytic Probit-like Disturbances
Combining Revealed Preferences and Stated Preferences
Latent Variables

Latent Classes
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We present a generalized framework that encompasses these extensions, describe each enhancement and

associated equations, and show relationships between methods including how they can be integrated. Note
that we summarize the material presented in Chapters 2 and 3 in order to provide a complete picture of the
generdized framework and to alow this chapter to stand on its own.

The extended models often result in functional forms composed of complex multidimensiona integrals.
Therefore, we aso describe an estimation method consisting of Maximum Simulated Likelihood Estimation
with aLogit Kernel smooth smulator, which provides for practical estimation of such models.

The Discrete Choice Model

The framework for the standard discrete choice model is again shown in Figure 4-1. The modd is based
on the notion that individual derives utility by choosing an dternative. The utilities U are latent variables,
and the observable choices y are manifestations of the underlying utilities. The utilities are assumed to be
afunction of a set of explanatory variables X , which describe the decison-maker n and the aternative
I,i.e:

Uin :V(Xm!q) +ein !
where: V isafunction of the explanatory variables,
q Iisavector of unknown parameters, and

e _ isarandom disturbance.

This formulation is grounded in classic microeconomic consumer theory; brings in the random utility
paradigm pioneered by Thurstone (1927), Marshak (1960), and Luce (1959); and incorporates the manner
of specifying utilities developed by Lancaster (1966) and McFadden (1974).

Starting from this general equation, assumptions on the decision protocol and on the distributions of the
disturbances lead to various choice models, most commonly the utility maximizing GEV forms (multinomial
logit, nested logit, cross-nested logit) or probit.

Explanatory
Variables X

l _ Disturbances(e)

'

v

Choice
Indicators y

Figure 4-1: Discrete Choice M odel
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Simplifying Assumptions and the Base Model

In this chapter, we present the generalized discrete choice model as a set of methods that extend the
multinomial logit model (MNL). For each of the described methods, MNL forms the core, and dll
extensions are built upon it. Aswill become apparent, this formulation offers complete flexibility (for
example, probit-like disturbances and nested structures can easily be implemented), enables
straightforward combination of methods, and has computational advantages.

In order to clarify the presentation of the generalized framework, we also make severa smplifying
assumptions: we assume utility maximizing behavior, linear in the parameters systematic utilities, and a
universal choice set across respondents. It is straightforward to relax these assumptions, and we will do so
where a deviation is useful for the discussion.

Given this, the base discrete choice model is specified as follows: [4-1

U,, = X,,b +n,,, or, invector notetion U, = X b +n_,,  “Structural Equation”

} L ifU, =max{U,}
Yin =1 ! :
1 O, otherwise

“Measurement Equation”

where: N denotesindividuds, n=1,...,N , where N isthe size of the sample;
I, ] denote aternatives;

C isthechoice sat, which is comprised of J dternatives,

isthe utility of aternative i asperceivedby n; U isthe (J° 1) vector of

utilities;

X,, isa (1" K) vector describing n and i; X, isthe (J° K) matrix of stacked
X

In?

b isa(K”"1) vector of unknown parameters;
Y, isthechoiceindicator, and Yy, isthe (3~ 1) vector of choice indicators; and

Finally, making the assumption that the disturbance (n,) isi.i.d. Extreme Value or Gumbel (0, m) ,

the structural and measurement equations lead to the MNL formulation:

. g Xinb) & . : ~ o)
PG |X,) = ey 8andthellkellhoodls Py, | X,)=QP(@|X,)r~ [42]
ae "’ 2

iTc
iTc
where P(i | X,) isthe probability that y,, =1, given X, (and parameters b ). We denote the
logit probability as L (i | X ) . The variance of n, is g/nt, where g isthe variance of a
standard Gumbel (p?/6) .
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Overview of the Components of the Generalized Framework

In this section, we provide background material and a brief presentation of each of the four extensions.
(Appendix D provides further detail on each of the extensions.) We will end with a summary of the
generalized discrete choice model.

Factor Analytic Disturbances and Logit Kernel

This first extension deals with both the disturbances of the choice model and computational issues. The
primary limitations with multinomia logit models, or Generalized Extreme Value models in genera, derive
from therigidity of the error structure. One relatively new solution to this problem isthe logit kernel
model presented in Chapter 2, and which we briefly summarize here. Thisis a discrete choice model that
has both probit-like disturbances, which provide flexibility, as well as an additivei.i.d. Extreme Vaue (or
Gumbel) disturbance, which aids in computation.

Framework

The framework for the model is shown in Figure 4-2, which isjust like the framework of a standard
discrete choice model except it has a parameterized disturbance. We parameterize the error structure
using a factor analytic form because this provides great flexibility and aso enables one to represent
complex covariance structures with relatively few parameters and factors. Thisis ageneral formulation
that can be used to specify al known (additive) error structures, including, heteroscedaticity, nested,
cross-nested, random parameters, and auto-regressive processes.

Explanatory
Variables X

Factor Analytic Disturbances
.~ +iid. Gumbel

Choice
Indicators y

Figure 4-2: Discrete Choice M odel
with Factor Analytic Disturbances and a L ogit Kernel
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Specification
The structure of the model (expanded on in both Chapter 2 and Appendix D) is:

U,=X,b+FTz, +n,,

where: F Tz, arethefactor analytic disturbances

F, isa(J” M) matrix of factor loadings, including fixed and/or unknown
parameters,

T isan (M~ M) lower triangular cholesky matrix of unknown parameters,
where TT'=Cov(Tz,),

z, isan (M " 1) vector of unknown factors with independent standard
distributions, and

U, X, b,n areasinthebase MNL modd (Equation [4-1] ).

While the factor analytic disturbances provide for flexibility, thei.i.d. Gumbel term aids in computation.
Namely, if the factors z , are known, the model corresponds to a multinomia logit formulation:

err( Xinb+F, Tz n)

é, en'(Xinb+FinTzn) '

L([X,2,)=
fic
Sincethe z , isin fact not known, the unconditional choice probability of interest is:

P(i |Xn):QL(i | Xn,z2)n(z,ly)dz

where n(z ,1,,) isthejoint density function of z . We can naturally estimate P(i | X,,;d) withan
unbiased, smooth, tractable smulator, which we compute as.
X . 1 c];) . d
P(I |Xn) :_a L(I | Xnizn) '
D =
where z ¢ denotesdraw d from the distribution of z ., thus enabling us to estimate high dimensional
integrals with relative ease.

Applications

The earliest gpplications of logit kernel were in random parameter logit specifications, which appeared 20
years ago in the papers by Boyd and Mellman (1980) and Cardell and Dunbar (1980). Since then, there
have been numerous applications and investigations into various aspects of the modd, including BertAkiva
and Bolduc (1996), Bhat (1997, 1998), Bolduc and Ben-Akiva (1991), Bolduc, Fortin and Fournier (1996),
Brownstone, Bunch and Train (2000), Brownstone and Train (1999), Goett, Hudson, and Train (2000),
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Gondl and Srinivasan (1993), Greene (2000), Mehndiratta and Hansen (1997), Revelt and Train (1998 &
1999), Srinivasan and Mahmassani (2000), and Train (1998). Most of the gpplicationsin the literature are
in the area of random parameters, but there are aso applications of heteroscedasticity (BenrAkivaand
Bolduc, 1996, and Greene, 2000), nesting (Ben-Akiva and Bolduc, 1996), cross-nesting (Bhat, 1997),
dynamics (Srinivasan and Mahmassani, 2000), and auto-regressive applications (Bolduc, Fortin and
Fournier, 1996). A very important recent contribution is McFadden and Train’s (2000) paper on mixed
logit (a generdization of logit kernel in which the mixing function does not have to be continuous), which
both (i) proves that any well-behaved random utility consistent behavior can be represented as closdly as
desired with amixed logit specification and (ii) presents easy to implement specification tests for these
models.

Combining Stated and Revealed Preferences”

The second extension deals with the issue of combining choice data from different sources. There are two
broad classes of choice or preference data that are used to estimate discrete choice models: revealed
preferences, which are based on actual market behavior, and stated preferences, which are expressed
responses to hypothetical scenarios. Each type of data has its advantages and disadvantages, including:

Choices. Revealed preferences are cognitively congruent with actual behavior, whereas
stated preferences may be subject to various response biases.

Alternatives. Revealed preferences can only be gathered for existing aternatives, whereas
stated preferences can be elicited for new (i.e., non-existing) aternatives.

Attributes: The attributes of the aternatives in arevealed preference setting often have
limited ranges, include measurement errors, and are correlated. Stated preference
surveys can address al of these issues through appropriate experimenta designs.

Choice set: The actual choice sets are often ambiguous for reveaed preferences, whereas
for stated preferences they are well defined (albeit the respondent may not
consider al dternatives).

Number of responses: It isdifficult to obtain multiple reveded preferences from an individua (for
example, it requires a panel setting), whereas repetitive questioning using
hypothetical scenariosis easily implemented in stated preference surveys.

Response format: Reveded preferences only provide information on the actua choice, whereas
stated preferences can employ various response formats such as ranking, rating,
or matching data that provide more information.

Given these strengths and weaknesses, the two types of data are highly complementary, and combined
estimators can be used to draw on the advantages of each. A fundamental assumption in conducting SP
surveysis that the trade-off relationship among major attributes is common to both revealed and stated

z This SP/RP discussion in this chapter is based on Ben-Akiva and Morikawa 1990, Morikawa 1989, and Morikawa, Ben-Akiva,
and M cFadden 1996.
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preferences. When there is such an overlap between the RP model and the SP model, there are
advantages to jointly estimating the models.

Framework

BenrAkiva and Morikawa (1990) devel oped techniques for combining the two types of data. (See dso the
review in Ben-Akiva et d., 1994.) The framework for the combined estimator is shown in Figure 4-3,in
which both stated preferences and revealed preferences are indicators of the unobservable utilities. The
benefits of the combined model include correcting bias that may exist in the SP responses, identifying the
effect of new services, identifying the effects of attributes that have either limited range or are highly
correlated in the RP data, and improving efficiency of the parameter estimates. In order to combine the
preference data, there are two important issues involving the RP and SP disturbances that need to be
considered. First, they are most likely correlated across multiple responses for a given individual. Second,
the scale (i.e., the variances of the disturbances) may vary across the two models. Methods for addressing
these issues are discussed in Appendix D.

Explanatory
Variables X

l RP and SP Disturbances

»
_— Choice Indicators:
Stated ySP

|
|
|
v

Choice Indicators:
Revealed y*°

Figure 4-3: Joint Revealed and Stated Preference M odel

Applications

These techniques are becoming fairly common in the literature. For example, joint SP/RP models have
been used to model recreationa site choice (Adamowicz et d., 1994), intercity mode choice (Ben-Akiva
and Morikawa, 1990), choices among gasoline and dternative fueled vehicles (Brownstone et al., 2000),
and pre-trip decisions as influenced by traveler information systems (Khattak et a., 1996).

Choice and Latent Variables

This extension dedl s with the causal structure of the model, and the ideas include capturing latent causal
variables and aso making use of different types of behavioral data. Often in behavioral sciences, there are
concepts of interest that are not well defined and cannot be directly measured, for example knowledge,
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ambition, or personality. These concepts are referred to as latent constructs. While there exists no
operationa methods to directly measure these constructs, latent variable modeling techniques are often
applied to infer information about latent variables. These techniques are based on the hypothesis that
although the construct itself cannot be observed, its effects on measurable variables (caled ‘indicators))
are observable and such relationships provide information on the underlying latent variable. We consider
first the incorporation of continuous latent factors as explanatory variables in discrete choice models (a
summary of what was presented in Chapter 3), and in the subsequent extension we also incorporate
discrete latent constructs.

The behavioral framework for integrated choice and latent variable modelsis presented in Figure 4-4. The
am isto explicitly treat the psychologica factors, such as attitudes and perceptions, affecting the utility by
modeling them as latent variables. Psychometric data, such as responses to attitudinal and perceptua
survey questions, are used as indicators of the latent psychological factors.

Explanatory
Variables

N

Indicators <+ — —> —4» Indicators

|
|
|

v

Choice Indicators

Figure 4-4: Behavioral Framework for Including Attitudes and Per ceptions
in Discrete choice M odels

A generd approach to synthesizing models with latent variables and psychometric-type measurement
models has been advanced by a number of researchers including Keedling (1972), Joreskog (1973), Wiley
(1973), and Bentler (1980), who devel oped the structural and measurement equation framework and
methodology for specifying and estimating latent variable models. Such models are widely used to define
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and measure unobservable factors. Much of this work focuses on continuous latent constructs and
continuous indicators and is not described in relation to discrete choice models. When discrete indicators
areinvolved, direct application of the continuous indicator approach results in inconsistent estimates.
Various corrective procedures have been developed for discrete indicators (see, for example, Olsson 1979,
Muthén 1979, 1983, and 1984), and methods have been devel oped when both the latent variables and
indicators are discrete (see, for example, Goodman, 1974, and McCutcheon, 1987).

In the area of discrete choice models, researchers have used various techniques in an effort to explicitly
capture latent psychological factors in choice models. Alternative approaches include directly introducing
the indicators as explanatory variables, or sequentialy estimating a latent variable model and then a choice
model (see Chapter 3 for adiscussion). The method presented here is a general treatment of the inclusion
of latent variables and psychometric data in discrete choice models. The methodology integrates latent
variable models with discrete choice models, resulting in a rigorous methodology for explicitly including
psychological factorsin choice modds. A smultaneous maximum likelihood estimation method is
employed, which results in consistent and efficient estimates of the model parameters.

The work on the methodology presented here began during the mid-1980s with the objective of making the
connection between econometric choice models and the extensive market research literature on the study
of consumer preferences (Cambridge Systematics, 1986; M cFadden, 1986; and Ben-Akiva and Boccara,
1987). Since then, a number of researchers have continued devel oping and testing the techniques as
evidenced by the variety of applications discussed below.

Framework

The integrated modeling framework, shown in Figure 4-5, consists of two components, a choice model and
alatent variable modd.

The choice model is as before, except that now some of the explanatory variables are not directly
observable. It is possible to identify a choice modd with limited latent variables using only observed
choices and no additiona indicators (see, for example, Elrod, 1998). However, it is quite likely that the
information content from the choice indicators will not be sufficient to empiricaly identify the effects of
individual-specific latent variables. Therefore, indicators of the latent variables are used for identification,
and are introduced in the form of alatent variable mode.

The top portion of Figure 4-5 is a latent variable model. Latent variable models are used when we have
available indicators for the latent variables. Indicators could be responses to survey questions regarding,
for example, the level of agreement, satisfaction with, or importance of attributes or an attitudina
statement. The figure depicts such indicators as manifestations of the underlying latent variable, and the
associated measurement equation is represented by a dashed arrow. A structural relationship links the
observable causal variables (and potentialy other latent causal variables) to the latent variable, and these
are shown as solid arrows.
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Explanatory \
Variables X

\ > Latent Variable
Model
Latent - Latent Variable
Variables X* Indicators |

Choice
Indicators y

~.

Choice Model

Figure 4-5: Integrated Choice & Latent Variable M odel

The integrated choice and latent variable model explicitly models the latent variables that influence the
choice process. Structural equations relating the observable explanatory variables to the latent variables
model the behaviora process by which the latent variables are formed. While the latent constructs are not
observable, their effects on indicators are observable. Note that the indicators do not have a causd
relationship that influences the behavior. That is, the arrow goes from the latent variable to the indicator,
and the indicators are only used to aid in measuring the underlying causal relationships (the solid arrows).
Because the indicators are not part of the causal relationships, they are typically used only in the model
estimation stage and not in model application.

Applications

The following are examples of how latent variables have been incorporated into choice models (some of
which were described in detail in Chapter 3):

Bernardino (1996) modeled telecommuting behavior and included latent attributes such as the costs
and benefits of a program,

Borsch-Supan et a. (1996) modeled the choice of living arrangements of the elderly and included a
latent health characterigtic,

Hosoda (1999) modeled shoppers mode choices and included latent sensitivities to time, cost, comfort,
and convenience.
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Morikawa et d (1996) modeled intercity mode choices and included the latent attributes of comfort
and convenience,

Polydoropoulou (1997) modeled responses to advanced traveler information systems and included
latent variables such as knowledge and satisfaction,

Ramming (2000) modeled commuters  choice of route to work and included a latent characteristic that
represents knowledge of the transportation system, and

Train et a. (1987) modeled consumers choices of public utility rate schedules and included latent
characteristics such as the importance of energy consumption and the importance of finding new
energy Ssources.

Choice and Latent Classes

This extension focuses on capturing latent segmentation in the population. As with random parameter
models and latent variable models, latent class models also capture unobserved heterogeneity, but are
employed when the latent variables are discrete constructs. The ideais that there may be discrete
segments of decision-makers that are not immediately identifiable from the data. Furthermore, these
segments (or classes) may exhibit different choice behavior in terms of choice sets, decision protocals,
tastes, or model structure (for example, nesting). While we cannot deterministically identify the classes
from the observable variables, we presume that class membership probabilities can be estimated.

Framework

The framework for alatent class model is shown in Figure 4-6, in which the latent classes are shown to
either impact the formulation of the utilitiesin terms of, for example, taste variation, decision protocols, or
choice sets. The basic form of the latent class modd is:.

P(i1X,) =& PG| X,:S)P(s X,)

In this equation, the choice model, P(i | X,,;S) , is class-specific and may be specified differertly for
different classes of individuals, S. The class membership model, P(s|X,) , isthe probability of belonging
to class s, and may depend on explanatory variables X, .
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Latent
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Choice
Indicators y

~

Choice Model

Figure 4-6: Discrete Choice M odel with Latent Classes

Applications
The following are examples of how latent classes have been used to improve the behavioral representation
and explanatory power of choice models:

Ben-Akiva and Boccara (1996) modeled commuters: mode choices allowing for different choice sets
among travelers,

Gopinath (1995) modeled intercity travelers mode choices alowing for different decision protocols
among classes (for example, utility maximizers versus habitua choosers),

Gopinath (1995) modeled shippers choices between train and truck alowing for different sengtivities
to time and cogt, and

Hosoda (1999) modeled shopper’s mode choice alowing for different sensitivities of time and cogt, for
example, distinguishing between patient and impatient travelers.

The Generalized Discrete Choice Model

Integrating the extensions described above leads to the generalized discrete choice model as shown in
Figure 4-7. The framework draws on ideas from a great number of researchers, including Ben-Akivaand
Morikawa (1990) who developed the methods for combining revealed and stated preferences; Cambridge
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Systematics (1986) and McFadden (1986) who laid out the origina ideas for incorporating latent variables
and psychometric data into choice models; Ben-Akiva and Boccara (1987) and Morikawa, Ben-Akiva,
and McFadden (1996) who continued the development for including psychometric data in choice models;
Gopinath (1995) who developed rigorous and flexible methods for capturing latent class segmentation in
choice moddls, and Ben-Akiva and Bolduc (1996) who introduced an additive factor anaytic
parameterized disturbance to MNL’ s i.i.d Gumbel.

/ Explanatory \
Variables

Latent Class < Disturbances __ / \ .- Disturhances > Latent Variable
Modd A 4 Model
. Latent Latent .
Indicators +—— +“—>> ——> Indicators
\ /
RP and SP Disturbances, Factor Analytic
v « Disturbances, & i.i.d. Gumbel

- Choice Indicators:
Stated

v

Choice Indicators:
Revealed

"

Choice Model

Figure 4-7: Generalized Discrete Choice Framework

Asshown in Figure 4-7, the core of the modd is the standard multinomia logit mode (highlighted in bold),
and then the extensions are built upon it:

Factor Analytic (probit-like) disturbances in order to provide aflexible covariance structure,
thereby relaxing the independence from irrelevant alternatives (11A) condition of MNL and enabling
estimation of unobserved heterogeneity through, for example, random parameters.

Explanatory
Variables

l _ Factor Analytic Disturbances

Choice
Indicators
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Combining revealed preferences (what people actually do) and stated preferences (what people
say that they would do) in order to draw on the advantages of the two types of data.

Explanatory
Variables
l RP and SP Disturbances
g
Choice Indicators:
> Stated

|

|

|

1

Choice Indicators:
Revealed

Incorporating latent variables in order to integrate behavioral indicators and to provide aricher
explanation of behavior by explicitly representing the formation and effects of latent constructs such
as attitudes and perceptions.

Explanatory
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\ , Disturbances
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|

|

\4
Choice

Indicators

Sipulating latent classes in order to incorporate yet another type of behaviora indicator and to
capture latent segmentation that may influence various aspects of the choice process including taste
parameters, choice sets, and decision protocols.
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Most of the methodologica developments and applications found in the literature apply a single one of the
extensions we describe in this chapter. Exceptions that we have found are Gonil and Srinivasan (1993)
who developed a model with random parameters and latent classes and Hosoda (1999) who included
continuous latent variables as explanatory variables in alatent class model. The generalized framework
proposed here integrates the various extensions available for discrete choice models.

The framework has its foundation in the random utility model, makes use of different types of data that
provide insight into the choice process, alows for any desirable disturbance structure (including random
parameters and nesting structures) through the factor analytic disturbances, and provides means for
capturing latent heterogeneity and behavioral constructs through the latent variable and latent class
modeling structures. Through these extensions, the choice model can capture more behavioraly redlistic
choice processes and enable the validity of more parsimonious structures to be tested. Furthermore, the
framework can be practically implemented via use of the logit kernel smooth simulator (as aresult of the
additivei.i.d. Gumbel) and a maximum smulated likelihood estimator.

Generalized Discrete Choice Model
In this section, we discuss the specification, estimation, and identification for the generalized mode.

Framework

The framework for the generaized discrete choice model isin Figure 4-7, which shows how the
extensions (factor analytic disturbances, joint SP/RP, latent variables, and latent classes) are conceptually
integrated into a single framework.

Specification

In specifying the generalized discrete choice model, it is useful to think of two different aspects to the
process. Thefirst is specifying the behaviora modd of interest, i.e., amodel that explains market behavior
(revealed preferences) and the causal relationships behind this behavior. Typically, amode with arich
behavioral structure cannot be estimated by drawing on revealed preferences alone. So, the second aspect
of the specification has to do with incorporating additional behaviora indicators to aid in estimating and
identifying the parameters in the model of interest. Each of these aspects is addressed below.

The Generalized Choice Model

The generalized modd that explains the market behavior consists of several components. The core of the
mode is the multinomial logit probability, which we denote as L (Y | X,,) . As discussed above, adding
features such as factor analytic disturbances (FTz ), latent variables ( X ), and latent classes ('S) can be
used to relax the limiting regtrictions of the multinomiad logit formulation and enrich the behaviora
representation of the model. While these additional elements are al unknown factors, we can write the
multinomid logit probability given the latent variables, latent classes, and factors, which we denote as

L (Y X4 X5,82).
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However, because the latent variables, classes, and factors are, in fact, unobservable, there are additional
components to the model that are necessary in order to specify their distributions. These include:

The distribution of the factor analytic disturbances, f (z);

The digtribution of the latent variables, as defined by the latent variables structura (i.e., causal)
modd, f (X, | X,) ; and

The class membership model, P(s| X,) , whichisthe probability of belonging to class S given
explanatory variables X .

These components are integrated together to form the generalized choice model:

Py 1 X,)= A (LY 1% X" ,82)P(s| X,)) £ (X | X,)f (2)dX "dz [4-3]

s=1

The condiitional logit probabilities, L (y." | X,,X,sZ ), arefirst summed over the latent classes, and
then integrated over the unknown latent variables and factor analytic disturbances. The resulting function
is the probability of the revealed behavior as a function of observable explanatory variables. Thisisthe
model of interest in that it explains market behavior. It dso alows for arich causal specification through
incorporation of flexible disturbances, latent variables, and latent classes. This generalized choice model
includes the parameters of the systematic utilities from the basic logit mode (b ), the parameters of the
factor analytic disturbances, the parameters of the class membership model, and those of the structural
equations of the latent variables. Thisis alot to estimate using only the revealed choices, and thisis where
the other sources of data come into play.

The Likelihood Function

While the reveded preferences are the only behavior that we are interested in explaining and predicting,
there also exists a host of other behaviord indicators that can provide assistance in estimating the
parameters of the behavioral model presented above. These include:

Stated preferences, Y, which aid in estimating the parameters of the choice mode (b ).

Psychometric indicators, |, which help with the estimation of the class membership mode!,
P(s| X,,) , and the latent variable structural model, f (X, |X,) .
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To make use of this information, we introduce two more € ements to the model. Thefirst is the SP modd,
which is analogous to the RP model as written above:

L (Yig| Xo X;,52) ,and g =1,...,Q,, denoting multiple responses per individual.

The SP model will share some parameters with the RP model. Thus by using appropriate experimental
designs for the SP experiment, the inclusion of SP data can improve the estimation of the RP choice model
parameters. Note that there is often correlation among SP responses and between SP and RP responses
that should be captured in the joint model. (See Appendix D for further discussion.)

The second € ement is the measurement modd for the latent constructs. This is written as the distribution
of the indicators given the latent variables and the class, S, asfollows:

(1, 1X,.8)

Note that the addition of the SP model and the measurement model will add nuisance parameters, which
are not a part of the behavioral mode! of interest (i.e., Equation [4-3]), but also must be estimated.

Incorporating these additiona e ements into Equation [4-3], the likdihood function is then:

P(Yy"Ya ol 0 1X,) = [4-4]

\\OS m RP * 91 =] * * O * *

@A cL (Yo [ X0, X7,82)O L (Yog | Xy X',82) F (10 | X, S)P(s] X,)+F (X7 |X,) f(z)dX dz
s1e q=1 (4]

Alternatively,

POYR" Yn ok n1X,) =
S

@A (POR ¥ [ X0 Xa,82) (1, I X7, 9)P(s] X,) ) (X X)) (2)dX dz ,

s=1

%
where P(y", vi7| X, X;,82) =L(YF| X,.X",5,2)OQ L(yq | X, X",5.2).

g=1

Application

While the full specification shown in Equation [4-4] is used to estimate the model, the aim of including the
additional behaviord indicators is smply to improve the specification of the parameters in Equation [4-3].
This latter equation isthe mode of interest, and it is the one used for mode application.

134



Estimation

We use maximum simulated likelihood (MSL) techniques for estimation, although clearly other methods
(for example, Method of Moments) could be implemented. We choose MSL because of its
straightforward interpretation and implementation, as well as its performance and asymptotic properties.

As described above, Equation [4-4] is used for estimation. One key in estimation is to write the equation
such that the distribution over which the integral is taken is independent multivariate standard normal,
because this allows the application of genera estimation code. For example, making the assumption that
the latent variable structural modd is of the form:

X: =h(X,)+w,

where h(¥ isavector function of the explanatory variablesand w is avector of random disturbances.
Given these relaionships, X, can then be replaced in the likdihood by X, andW Thus f(,1X,,s)
becomes f(In | X,,w,s); f(X |X,) becomes f(w);and P(y™,y¥| X, X, ,sZ) becomes
P(Y®, vy | X,,W, s,2) , which leads to the following likelihood function:

P(yn ’yn ’ |Xr|) =

@ﬁ (PR Y | Xaw,52)F (1, 1 X0 W, 9P(s| X,)) F W) f (z)dwdz

s=l

By construction, the factors w (from the latent variables) and z (from the factor analytic disturbances
and correlation among RP and SP. disturbances) arei.i.d. normally distributed (via the Cholesky
decomposition, if necessary). A second key to the estimation is to keep the dimensiondlity of the integral
down. The dimension is determined by the factor anaytic parameters (in z ), the RP/SP correlation terms
(@soin z ), and the latent variables (W ). It is dso desirable to keep the number of classes small. When
the dimension of theintegrd is above 3, smulation techniques are required in order to evaluate the integral.
The basic idea behind smulation is to replace the multifold integra (the likelihood function) with easy to
compute probability smulators. The advantage of the logit kernel formulation isthat it provides a tractable,
unbiased, and smooth smulator for the likelihood, namely:

POYE .y &1, IX,) = [4-5]

D S
TAL8 PO YT 1 X, W1, 52 £ (1, X, WP X,).
where z ! andw? are particular regizations (or draws) from a standard normal distribution. Thus, the
integral is replaced with an average of values of the function computed at discrete points. There has been
alot of research concerning how best to generate the set of discrete points. The most straightforward
approach is to use pseudo-random sequences (for example, Monte Carlo). However, variance reduction
techniques (for example, antithetic draws) and quasi-random approaches (for example, Halton draws,
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which are used in this chapter) have been found to cover the dimension space more evenly and thus are
more efficient. See Bhat (2000) for further discussion.

Using the probability smulator, the smulated log-likelihood of the sampleis:

- N
Ld)=a InP(yy yn ol o [Xa) [4-6]

n=1

where d isthe vector of dl the unknown parameters. The parameters are then estimated by maximizing
Equation [4-6] over the unknown parameters.”

A wdl-known issueis that the smulated log-likelihood function, athough consigtent, is smulated with a
downward bias for finite number of draws. The issue is that while the probability smulator (Equation [4-5]
) is unbiased, the log-simulated-likelihood (Equetion [4-6]) is biased due to the log transformation. In order
to minimize the bias in smulating the log-likelihood function, it isimportant to smulate the probabilities with
good precision. The precision increases with the number of draws, as well as with the use of intelligent
methods to generate the draws. The number of draws necessary to sufficiently remove the bias cannot be
determined a priori; it depends on the type of draws, the model specification, and the data. Therefore,
when estimating these models, it is necessary to verify stability in the parameter estimates as the number
of drawsisincreased. In Appendix E, we provide results verifying that the models we present in the case
study (next) have ‘stabilized’, which we somewhat arbitrarily define as when the estimation results
converge to within one standard error. Note that as the dimensionaity of the integra increases, so too
does the required number of draws. Also note that some of our models (particularly the high dimensiona
random parameter models) required 20,000 Halton draws, and they are still not perfectly stable. This
suggests that the model may need to be simplified in order to make estimation feasible.

Identification

Identification can be difficult, particularly as the model gets more complex. While specific identification
rules have been developed for specia cases of the generalized framework, there are no general necessary
and sufficient conditions for identification. The best we can do isto apply the sufficient, but not necessary
technique of conditionally identifying each sub-module (asin the two- and three-step approaches).
However, in many cases there remains uncertainty regarding identification and, furthermore, even models
that are theoretically identified often have multicollinearity issues that impede estimation of the parameters.
Therefore, the use of empirical identification tests is highly recommended. There are severa possible
techniques in this category, including:

Conducting Monte Carlo experiments by generating synthetic data from the specified model
structure (with given parameter values), and then attempting to reproduce the parameters using
the maximum likelihood estimator. If the parameters cannot be reproduced to some degree of
accuracy, then thisis an indication that the model is not identified.

% In some cases, sequential estimation methods could be used (see, for example, Ben-Akiva et al., 1999, Morikawa 1989, and
Morikawa et a., 1996), which produce consistent but inefficient estimates.
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Verifying that the parameters converge to the same point and likelihood given different starting
values.

Verifying that the Hessian of the log-likelihood function is non-singular (atest of local
identification). Thistest is usualy performed automatically in order to generate estimates of the
standard errors of estimated parameters.

Congtraining one or more parameters to different values, and verifying that the log-likelihood shifts
asaresult. (Thistest is particularly useful when there is one or more suspect parameters.)

Verifying that the parameters are stable as the number of smulation drawsisincreased. Thisis
critical, as an unidentified model will usually appear identified with a smal number of draws.

Case Study

To demongtrate and test the generaized discrete choice model, we applied the technique to a single model
application. Appendix D provides the genera equations for each of the methods, and here we provide
them for a particular application.

Data

The models presented use data collected in 1987 for the Netherlands Railway. (A subset of these data
was used for Case Study 1 in Chapter 3.) The purpose in collecting the data was to assess the factors that
influence the choice between rail and auto for intercity travel. The data were collected by telephone, and
consist of people who had traveled between Nijmegen and Randstad (approximately a two-hour trip) in the
3 months prior to the survey. The following information was collected for each of 228 respondents:

Demographic data:
Characteristics of the respondent, for example, age and gender.

Psychometric data:
Subjective ratings of latent attributes of rail and auto, for example, relaxation and reliability.

Revealed Preference data (RP):
Characteristics of the Nijmegen to Randstad trip made by the respondent, including:
— the chosen mode (rail or auto);

— characteristics of the trip, such as trip purpose (business or other), number of persons traveling,
and whether or not there was a fixed arrival time requirement; and

— attributes of the dternatives, including cost, in-vehicle and out-of -vehicle travel times, number of
transfers (rail only).

Stated Preference data 1 (SP1 —rail versusrail):
Responses to a stated preference experiment of a choice between two hypothetical rail services.

For each experiment, the respondent was presented with two hypothetical rail aternatives for the
particular intercity trip reported in the RP experiment. Each aternative was described by travel cost,
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travel time, number of transfers, and level of amenities. Level of amenities is a package of different
aspects such as seating room and availability, quietness, smoothness of ride, heating/ventilation, and
food service, but is presented at only three levels (0, 1, and 2, the lower the better). Given the two
aternatives, the respondent was asked to state his or her preference on the basis of a five point scale:

1 - definitely choose alternative 1,

2 - probably choose dternative 1,

3 - not sure,

4 - probably choose dternative 2, and
5 - definitely choose dternative 2.

Each respondent was presented with multiple pairs of choices, and a total of 2,875 responses were
collected (an average of about 13 per person).

Stated Preference data 2 (SP2 —rail versus auto):
Responses to a stated preference experiment of a choice between hypothetical rail and auto services.

For each experiment, the respondent was presented with a hypothetica rail aternative and a
hypothetical auto dternative for the particular intercity trip reported in the RP experiment. Each
aternative was described by travel codt, travel time, number of transfers (rail only), and level of
amenities (rail only). Given the two dternatives, the respondent was asked to state his or her

preference on the basis of afive point scae:
1 - definitely choose auto,
2 - probably choose auto,
3 - not sure,
4 - probably chooserail, and
5 - definitely choose rall.

Each respondent was presented with multiple pairs of choices, and a total of 1,577 responses were
collected (an average of about 7 per person).

For additional information on the data, see Bradley, Grosvenor, and Bouma (1988).

Base Models for the Case Study

For binary choice moddls, it is convenient to introduce a dightly different notation than in the general case.
There are 2 tilities, only the difference between the utilities matters, and so we express one utility
equation, which is the difference between the two utilities:

Un :U1n - U2n = an +nn ,

whereU, is(1" 1, X, is(1” K) andisequa to (X,,- X,,), b (K" 1) isashefore, and n isthe
difference between two independent Gumbel distributed random variables (and is therefore logistically
distributed).
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For the revealed preference data, the choice indicator is a standard 0/1 binary choice indicator, and we
redefine the choice indicator as.

RP
n

1 1ifuf¥3 0 (personnchoserail)
_{-1 if U™ <0 (person nchoseauto) -

The likelihood for an RP response is then:

1

RP RP. —
L IXTbm = e

[4-7]

The stated preference choice indicators consist of a five-point preference rating, and so an ordina logit
model is used. The utility is specified as above (in differenced form), and threshold values (t ) are
specified in the utility scale such that:

RO =P, <V £ty),
R(2) =P, <UEL,),
RO =Pt,<U; £t,),
P.(4) =P(,<U7Et,),

F:;‘(5) =P(t4<UnSD£t5)i v=1 v=2 v=3 v=4 v=5
tl t2 tg

wheret,=-¥ andt =¥.
We define the ordina choice indicator as.

e 11ift,,<UX £,

=i _ i=1,...,5.
710 otherwise

in

and the vector of theseindicatorsis Yy~ = (Yo ,..., Yo )'.

The likelihood for each ordina preference rating is then:

o

j n
POYT IXTibt =0 —1 . 1 ¢
T &L+ e T ]y g O

where there is a different specification for each SP dataset (SP1 and SP2).

Onefina detail on the ordinal model is the normalization of the threshold parameters. For the Rail versus
Rail stated preference data, the order of the aternativesisirrelevant (i.e., they can be swapped without
affecting the modd), therefore, the threshold parameters must be symmetric, i.e, t, =-t ,and t, =-t,.
We verified that the data support this constraint (via a likelihood ratio test), and all models presented here
impose the congtraint. For the Rail versus Auto stated preference data, the symmetry condition is not
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necessary (and statistical tests on the data verified that it does not hold). However, since we estimate a
constant in the model, we must impose one constraint on the threshold parameters to identify the model.
The constraint we imposeist, = -t 5, because this maintains zero as the center point of the threshold
parameters.

Table 4-1: Revealed Preference Binary L ogit Mode Choice M odel

Mode Choice Model: Rail versus Auto

Parameter Urail Uauo Est. Std Er. t-stat
Rail constant v 0.637 0.425 (1.5)
Work trip dummy v 1.21 048  (25)
Fixed arrival time dummy v 0.736 0.368 (2.0
Female dummy v 0.949 0352 (2.7)
Cost per person in Guilders v v -0.0477 0.0122 (3.9)
Out-of-vehicle time in hours ¥ v -2.90 0.80  (3.6)
In-vehicle time in hours v o v -0.554 0.462  (1.2)
Number of transfers v -0.255 0.255  (1.0)
Number of observations: 228
Log-likelihood: -109.89
Rho-bar-squared: 0.254

Revealed Preference Model

The first moddl we present using the mode choice datais a binary logit model using the revealed
preference data. Thisis equivalent to a classic mode choice model. The likelihood for this model is as
written in Equation [4-7]. The estimation results are shown in Table 4-1. We report robust standard
errors” and/or t-statistics for all models. The check marks in the Uy and Uz columns sgnify whether
the parameter isincluded in the rail and/or auto utility. The signs of the parameters are as expected. With
the exception of in-vehicle time and number of transfers, the parameters are significantly different from
zero. The monetary value of in-vehicle timeis 11.6 Guilders per hour or about $5.60 per hour™, and for
out-of-vehicle time it jumps to 60 Guilders or $29 per hour.

Joint Stated and Revealed Preference Model

We first gpply the joint RP/SP technique, because this model then forms the basis for al other models that
we estimate. For each respondent, we have the following choice indicators available:

® us ng the robust asymptotic covariance matrix estimator H" 1BH!, where H isthe Hessian (calculated numerically, in our
case) and B isthe cross product of the gradient. (Newey and McFadden, 1994)

30
In 1985 dollars, using 1985 exchange rate.
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Type of Indicator # Per Person

Reveded preference 1
Stated preferences from rail versus rail hypothetical scenarios Q,
Stated preferences from rail versus auto hypothetical scenarios R,

The utilities are:

Url]?P - Xrl]?Pb +y RPhn +nnRP’

U =Xg'b+ng", q=1..Q,, (rail versus rail),
UF?=X%p +y F?h_ +nT?, r=1..,R, (rail versus auto),

Where an agent effect (h) isincluded to capture correlation among the SP responses and between the

SP and RP responses for agiven individual. It does not enter the SP1 model, because it does not have
defined dternatives (i.e., it israil versusrail).

The likelihood function for the joint modd is:
Py Y o Ya o 1X) = [4-8]

OO 1X7 )Py, I X7 ) P(Y, X7 h)f (h)dh,
h

where: h isascadar parameter,
f (¥ denotesthe standard norma distribution,

d includes b,my |,

L(yy" [ X:7.h,) = 1

1+ @ o Thy® [4-9]
F1 F1
P(y, "1 X7)
Yim
olo}: : : o [4-10]
- F1 $2, L., oL, — )
g=1 jzlgl+e'nbpl(an b 'tj ) 1+e'nh:>1(an b-tj'l)ﬂ
F2 F2
P(y, ~ [ Xy %hy)
Vi
= 5 6% Xspz:ll; 3 1 ¥2) Xspz:ll; £y =h 9 . [4'11]
r=1 i=1 81+e_rrgP2( nr +y n'ti ) 1+ e'r%Pz( nr Hy n_t i1 ) z
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Table 4-2: Joint Stated Preference & Revealed Preference M ode Choice M odel

Joint RP/SP1/SP2 RP Only (Rail vs. Auto) SP1 Only (Rail vs. Rail) SP2 Only (Rail vs. Auto)

Parameter Uni Uauo| Est. Std Er.  t-stat Est. Std Er.  t-stat Est. Std Er.  t-stat Est. Std Er.  t-stat
Rail constant RP v 0.444 0.493  (0.9) 0.637 0.425  (15)
Rail constant SP2 v -0.466 0.777  (0.6) -2.10 063  (3.3)
Work trip dummy v 1.17 051 (23 1.21 0.48  (25)
Fixed arrival time dummy v 0.723 0.381 (1.9) 0.736 0.368 (2.0)
Female dummy v 0.990 0.381 (2.6) 0.949 0.352 2.7
Cost per person in Guilders ¥/ -0.0608 0.0132  (46) | -0.0477 0.0122  (39) -0.141 0.012 (11.8)]| -0.0703 0.0180 (3.9)
Out-of-vehicle time in hours ¥’ -2.23 0.83 2.7 -2.90 0.80 (3.6) -0.841 0.935 0.9)
In-vehicle time in hours v -0.710 0.158  (4.5) -0.554 0462  (1.2) -1.64 0.16 (10.2) -1.23 041 (3.0)
Number of transfers v -0.100 0.036 (2.8) -0.255 0.255 (1.0 -0.238 0.066 (3.6) 0.0798 0.1995 (0.4)
Amenities v -0.361 0.080 (4.5) -0.821 0.073 (11.2) -0.925 0.237 (3.9
Inertia dummy (RP Choice) v 2.97 1.02 (2.9) 5.92 0.68 8.7)
Agent effect RP 0.686 0.490 (1.4)
Agent effect SP2 2.44 050 (4.9 311 029 (10.8)
Scale (mu) SP1 2.31 050  (4.6)
Scale (mu) SP2 1.31 0.30 (4.4)
Taul SP1 (=-Tau4 SP1) -0.195 - -0.450
Tau2 SP1 (=-Tau3 SP1) -0.0127 - -0.0292
Tau3 SP1 0.0127  0.0036  (3.5) 0.0292  0.0060  (4.9)
Tau4 SP1 0.195 0.049 (4.0 0.450 0.038 (11.7)
Taul SP2 -0.986 0.219 (4.5) -1.30 0.13 (10.2)
Tau2 SP2 (=-Tau3 SP2) -0.180 - -0.238
Tau3 SP2 0.180 0.053 (3.4) 0.238 0.055 (4.3)
Tau4 SP2 1.32 032 (41) 175 018  (9.6)
Number of observations: 4680 228 2875 1577
Number of draws (Halton): 1000 1000 1000 1000
Log-likelihood: -4517.43 -109.89 -3131.10 -1271.29
Rho-bar-squared: 0.380 0.254 0.322 0.495

The estimation results are presented in Table 4-2.* The joint model is presented along with models
estimated individually on each of the three datasets. A likelihood ratio test was performed to verify that the
restrictions imposed by the joint model are supported by the data: the 8 restrictions result in a reduction of
under 6 log-likelihood points and therefore the restrictions are not rejected at a 10% significance level.

One clear benefit of the joint model isthat the parameters for in-vehicle travel time and number of
transfers are now statistically significant. The monetary value of in-vehicle time remains consistent with
the RP model at about $5.60/hour, whereas the value of out-of-vehicle time fals from around $29 to under
$18/hour. Another benefit is that the concept of ‘amenities’ is now captured in the model. Both the inertia

* All models are estimated using Maximum Simulated Likelihood Estimation techniques. The method and related issues (for
example, number of draws and Halton draws) will be covered when estimation is discussed for the integrated model.
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and agent effect are highly significant, and therefore estimating this model with the inertia effect and
without the agent effect would result in biased estimates of the parameters.

Random Parameter (Factor Analytic) Model

As an example of alogit kernel model, we have taken the joint SP/RP mode choice model presented in the
previous section and allowed some of the parameters to be randomly distributed. Separating out the
parameters that are fixed across the population (b ) from those that are allowed to vary across the
population (g,, ), the model is now specified as follows:

U = X7 +Wg, vy ", +n”
U= X3 +Wog, +nt q=1,...Q,,

UF?= X7 + WiPg,+y Fh, +n r=1..R.

nr !

where X and W are the explanatory variables (formerly al included in X).

In the random parameter model presented, we allow the parameters associated with attributes of the
alternativesto be distributed, i.e., W includes the following five variables:

Cost per person

Out-of -vehicle travd time
In-vehicle travel time
Number of transfers
Amenities

All of these parameters have sign restrictions, and therefore we specify the parameters with a multivariate
lognorma distribution. Replacing g,, with the equivaent lognorma relationship g, =- mexp(g+Tz ),
(where the minus constrains the signs to be negative and mexp() is defined below) the model is then
written as follows:

UF =X +W, " (-mexp(g +Tz,)) +v ©h, +n [,

Us'=Xg b +W (-mexp(g +Tz,)) +np

ng
U2 =X77b +W.™ (-mexp(g +Tz,)) +y *°h, +n
where: g isa (5" 1) vector of unknown parameters,

z isa (5" 1) vector of indegpendent standard normals,

T isa (5 5) lower triangular matrix of unknown parameters, and

mexp(X) isan operator that exponentiates each element in the vector X.
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The likelihood is then:
POYY Y W¥a  1X)= @, Ly 11X,z h)O P(Yoa 1X5":2)

*O Py’ Xffz,z,h)Of @, ¥ ()dzdn

where the unknown parameters include b,mY, g, and T (using the notation defined earlier).

The results for the random parameter mode choice model are shown in Table 4-3.% The first mode is the
joint SP/RP model shown in Table 4-2, and is repeated here for comparison purposes. The second model
provides estimation results for a random parameter model in which the parameters are independently
distributed (i.e., T isdiagond). We find that there is alarge improvemernt in fit over the mode with fixed
parameters. The third model allows for correlations among the random parameters(i.e., T islower
triangular), which provides a marginal improvement in fit.

Note that because of the structure of the lognormally distributed parameters, the t-stats do not have their
normal interpretation. The parameter estimates and standard errors reported in Table 4-3 for the
distributed parameters are g and the elements of T . However, these parameters are related to the mean
and variance of the distributed parameters as follows:

mean(g,,) = €%

variance(g,,) = €% (ez“'”kk - e‘mkk) ,

where (TT"),, isthe k" diagona eement of TT"

32 See Random Parameter section of Chapter 2 for adiscussion of identification of lognormally distributed random parameters.
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Table 4-3;: Random Parameter M ode Choice M odel

Base RP/SP Model: Distributed Model 1: Distributed Model 2:
Not Distributed Independent Distributions Multivariate Distributions
Parameter Est. Std. Er.  t-stat Est. Std. Er.  t-stat Est. Std. Er.  t-stat
Rail constant RP 0.444 0.493 0.9) 2.80 0.97 (2.9) 1.67 0.81 (2.1)
Rail constant SP2 -0.466 0.777 (0.6) 4.05 1.20 (3.4) 2.19 0.79 (2.8)
Work trip dummy 1.17 0.51 (2.3) 0.891 0.762 (1.2) 1.16 0.65 (1.8)
Fixed arrival time dummy 0.723 0.381 (1.9) 0.513 0.647 (0.8) 0.850 0.522 (1.6)
Female dummy 0.990 0.381  (26) 1.61 061  (2.7) 151 0.51 (2.9)
Cost per person in Guilders -0.0608 0.0132 (4.6) -2.19 0.26 * -2.33 0.26 *
Out-of-vehicle time in hours -2.23 0.83 (2.7) 1.56 0.34 * 0.97 0.36 *
In-vehicle time in hours -0.710 0.158 (4.5) 0.284 0.279 * 0.149 0.271 *
Number of transfers -0.100 0.036 (2.8) -2.29 0.33 * -2.25 0.31 *
Amenities -0.361 0.080 (4.5) -0.644 0.265 * -0.722 0.274 *
T11 0.993 0.129 (7.7) 1.29 0.06 (21.5)
T21 -0.479 0.043  (11.2)
T31 0.470 0.045 (10.4)
T41 0.645 0.055  (11.7)
T51 0.404 0.043  (9.4)
T22 0.723 0.166 (4.4) 0.658 0.060  (10.9)
T32 0.281 0.063 (4.5)
T42 0.287 0.021 (13.8)
T52 0.035 0.048 0.7
T33 0.818 0.057  (14.3) 0.894 0.042 (21.3)
T43 0.106 0.036 (2.9
T53 0.136 0.033 (4.1)
T44 1.96 0.21 (9.3) 1.83 011 (17.4)
T54 0.344 0.024 (14.1)
T55 1.06 0.05 (20.9) 111 0.07 (15.6)
Inertia dummy (RP Choice) 2.97 102 (29 -0.245 0.680  (0.4) 1.097 0.481 (23
Agent effect RP 0.686 0.490 (1.4) 3.19 1.28 (2.5) 2.07 0.65 (3.2)
Agent effect SP2 2.44 0.50 (4.9 4.14 114 (3.6) 3.74 1.05 (3.6)
Scale (mu) SP1 2.31 0.50 (4.6) 4.07 111 (3.7) 521 1.44 (3-6)
Scale (mu) SP2 1.31 030 (4.4 1.79 048  (3.8) 1.88 054  (35)
Taul SP1 (=-Tau4 SP1) -0.195 e -0.241 -0.196 ---- -—--
Tau2 SP1 (=-Tau3 SP1) -0.0127 - -0.0159 -0.0128 === -—-=
Tau3 SP1 0.0127 0.0036 (3.5 0.0159 0.0052  (3.0) 0.0128 0.0043  (2.9)
Tau4 SP1 0.195 0.049 (4.0) 0.241 0.081 (3.0) 0.196 0.071 (2.7)
Taul SP2 -0.986 0.219 (4.5) -0.904 0.241 (3.8) -0.856 0.241 (3-6)
Tau2 SP2 (=-Tau3 SP2) -0.180 e -0.160 -0.150 ---- -—--
Tau3 SP2 0.180 0.053 (3.4) 0.160 0.055 (2.9) 0.150 0.053 (2.8)
Taud SP2 1.32 0.32 (4.1) 1.15 0.31 (3.8) 1.08 0.31 (3.5)
Number of observations: 4680 4680 4680
Number of draws (Halton): 1000 20000 20000
Log-likelihood: -4517.43 -3931.20 -3911.72
Rho-bar-squared: 0.380 0.460 0.461

* Testing that the lognormal location parameter is different from 0 is meaningless.
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Firgt, note that it is meaningless to test that the location parameter, g, is different from zero. What we
want to test is that the mean(g,,) is different from zero. Second, testing that the parametersin T are
significantly different from zero provides some information, but again it would be better to test the
(co)variances directly. We did generate t-tats for the mean and standard deviations of the population
parameters for the independently distributed parameters (not shown), and the t-stats for the standard
deviations ranged between 1.8 and 4.8, which are more in line with the t-stats for the other parametersin
the model. Regardless of the t-stats, we can tell by the increase in fit that the additional parameters
improved the modd!.

Table 4-4 provides the estimated mean and standard deviation for each of the distributed parameters.

Table 4-4;: Mean and Standard Deviations of the Distributed Parameters

Base RP/SP Model: Distributed Model 1: Distributed Model 2:
Not Distributed Independent Distributions Multivariate Distributions
Parameter Mean Std Dev Mean Std Dev Mean Std Dev
Cost per person in Guilders -0.0608 0.000 -0.183 0.237 -0.223 0.459
Out-of-vehicle time in hours -2.23 0.000 -6.19 5.12 -3.68 3.57
In-vehicle time in hours -0.710 0.000 -1.86 181 -2.01 2.84
Number of transfers -0.100 0.000 -0.689 4.629 -0.728 4,971
Amenities -0.361 0.000 -0.922 1.331 -1.04 1.99

Choice and Latent Variable Model

Our mode choice dataset includes information pertaining to the respondents subjective ratings of various
latent attributes. Following the RP portion of the survey, the respondents were asked to rate the following
aspects for both rail and auto:

Relaxation during the trip

Rdiability of ariva time

Flexibility of choosing departure time

Ease of traveling with children and/or heavy baggage
Safety during the trip

Overdll rating of the mode

Responses for the first 5 attributes were in the form of a 5-point scale (from very bad to very good), and
the overdl rating was on a 10-point scale (again, from very bad to very good).

Clearly these responses provide information on the behavior. The question is how do we use this
information? Frequently, such data are directly inserted as explanatory variables in the choice mode,
resulting in highly significant parameter estimates and large improvements in mode fit. However, there are
severa issues with such an approach. First, the data are not available for forecasting, so if forecasting is
desired then such a specification is problematic. Second, the multicollinearity inherent in responses to such
astring of questions often makes it difficult to estimate the full set of parameters. The third and most
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fundamental issueisthat it is not clear that such data are causal. For these reasons, we use the latent
variable modeling approach, which assumes that these responses are indicators for a smaller number of
underlying causal latent attributes. Furthermore, these latent attributes can be explained by observable
attributes of the alternatives and characteristics of the respondent.

The equations for the RP/SP mode choice and latent variable model follow. First, some notes on the
mode:

All varigbles, including the latent variables and their indicators, are measured in terms of the difference
between rail and auto. This was done to simplify the specification: it reduces the dimensionality of the
integra by 2, it cuts down on the number of parameters, and it lowers the potential for multicollinearity
among the latent variable structural eguations.

Theindicators in differenced form have a 9-point scale for the first 5 attribute ratings, and a 19-point
scalefor the ‘overall’ attribute rating, and therefore are treated as continuous variables.

We performed a combination of exploratory and confirmatory analysis to arrive at the fina structure
of the latent variable model, which consists of 2 latent variables labeled comfort and convenience.

The indicators pertain to the RP choice, and therefore the latent variables are specified using only RP
datain the structural equation. However, we hypothesize that these latent perceptions aso impact the
stated preference rail versus auto experiment (SP2), and so we include the latent variables in the SP2
model, but allow them to have different weights (i.e, b ’s).

To specify the joint choice and latent variable model, we need to write the structural and measurement
equations for both the latent variable component and the choice component. The equations are as follows:

Latent variable structural equations:

X=X 4w, 1=1,2;  w,~N(@O,I).

The variances of the disturbance w, are set equal o 1 to set the scale of the latent variables

(necessary for identification). We experimented with models that allowed a covariance term (i.e.,
non-orthogonal latent variables), but it was consgtently insgnificant.

Choice model structural equations (as before, but with the addition of the latent variable):

U™ = X"by+ Xob,"+y Th,+n™

USt =X, 3, 4=1,..Q,
US?=XT, +XbTy T T, r=lR,.

Latent variable measurement equations:;
l,, =X,a,+U,, ; b=1,..6; u,~N(0,S, diagonal).

Choice model measurement equations (as before):
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w11t T <UTIELT

Y 10 otherwise

1 ift F2 <UF2 £y F2

0 otherwise

SP2

<
|

—

i |
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|

, i=1,..5, r=1.,R,.

The likdihood function for the joint model is.
P(Yn Y Y ola X)) =

* % & *
@), L IXP, X MO PO XSO POYT? X T2, X h)
f r=1

ngq ! o
q=1
*£.(1, | X)X | X (h)dhdX "
where:
Ly |XF, X7 h), P(yZH | XFY) ,and P(yF?|X F2,X" h ) areasin Equations

[4-9], [4-10], and [4-11], but with the latent explanatory variables (i.e., the utilities as
written above) ;

“w_A 1 @& -Xa,o0
f(,1X) =0 —f g "
bt Sy, S

2 _ .
, s,, =va(,) ;

U

Q|

* '2 *
BOCIXP) =OF (X - X1, ) 5 and
=1

The unknown parameters (using the notation defined earlier) include b,my ,a,l, and s, .
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Table 4-5: Choice and L atent Variable M ode Choice M odel

CHOICE MODEL

Choice and Latent Variable

Base RP/SP RP/SP Model
Choice Model atent variable por?ionebelow

Parameter Est. Std. Er. _ t-stat Est. Std. Er. _ t-stat
Rail constant RP 0.444 0.493 0.9) -0.442 0.750 (0.6)
Rail constant SP2 -0.466 0.777 (0.6) -0.890 0.837 (1.1)
Work trip dummy 117 0.51 23) 1.67 0.64 (2.6)
Fixed arrival time dummy 0.723 0.381 1.9 0.692 0.532 (1.3
Female dummy 0.99 0.38 (2.6) 1.13 0.45 (2.5)
Cost per person in Guilders -0.0608 0.0132 (4.6) -0.0605 0.0163 3.7)
Out-of-vehicle time in hours -2.23 0.83 @7) -0.983 0.936 (1.1)
In-vehicle time in hours -0.710 0.158 (4.5) -0.691 0.186 3.7)
Number of transfers -0.100 0.036 (2:8) -0.0982 0.0384 (2.6)
Amenities -0.361 0.080 4.5) -0.358 0.097 (3.7)
Latent Comfort - RP 1.16 117 (1.0
Latent Comfort - SP2 1.16 0.55 (2.1)
Latent Convenience - RP 1.30 076  (1.7)
Latent Convenience - SP2 0.764 0.331 (2.3)
Inertia dummy (RP Choice) 297 1.02 (2.9) 2.52 1.24 (2.0
Agent effect RP 0.686 0.490 (1.4) 0.210 0.611 (0.3)
Agent effect SP2 2.44 0.50 4.9) 2.08 0.64 (3.3)
Scale (mu) SP1 231 050 (4.6 2.32 063  (3.7)
Scale (mu) SP2 1.31 0.30 4.4 1.31 0.42 (3.1)
Taul SP1 (=-Tau4 SP1) -0.195 - - -0.194 - -
Tau2 SP1 (=-Tau3 SP1) -0.0127 -=== ==== -0.0126 ———- -
Tau3 SP1 0.0127 0.0036 (3.5) 0.0126 0.0041 (3.0)
Tau4 SP1 0.195 0049  (40) 0.194 0058  (33)
Taul SP2 -0.986 0.219 4.5) -0.988 0.313 (3.2)
Tau2 SP2 (=-Tau3 SP2) -0.180 -0.181
Tau3 SP2 0.180 0.053  (3.4) 0.181 0.065  (2.8)
Tau4 SP2 132 032 (41) 1.33 044 (3.0)
Number of observations: 4680 4680
Number of draws (Halton): 1000 5000
Log-likelihood (Choice&Latent): -6656.12
Log-likelihood (Choice): -4517.43 -4517.97
Rho-bar-squared (Choice): 0.380 0.380

LATENT VARIABLE MODEL

Structural Equations (2 equations, 1 per column)

Comfort Equation

Convenience Equation

Parameter Est. Std. Er. __t-stat Est. Std. Er. __t-stat
Constant - Comfort 0.106 0219 (05
Constant - Convenience 0.489 0303  (1.6)
Age dummy - over 40 -0.449 0.622 0.7) 0.871 0.287 (3.0
First class rail rider 0.431 0.567 0.8)
In-vehicle time in hours -0.481 0.331 (1.5)
Out-of-vehicle time in hours -1.18 0.71 (1.6)
Number of transfers -0.122 0.199 (0.6)
Free parking dummy (auto) 0.222 0.242 0.9)
Variance(W) 1.00 1.00
Squared Multiple Correlation (SMC) 0.092 0.230

Measurement Equations (6 equations, 1 per row)

Comfort Parameters Convenience Parameters Disturbance Params. (StdDev(th) Fit (SMC)
Equation Est. Std. Er. _ t-stat Est. Std. Er.  t-stat Est. Std. Er. _ tstat

Relaxation 0.522 0240  (2.2) 0.131 0135  (1.0) 1.17 013 (9.3 0.172
Reliability 0.331 0105  (3.1) 0.446 0089 (5.0 0.899 0.055 (16.3) 0.263
Flexibility 0.731 0.288 (2.5) 0.877 0.242 (3.6) 0.366
Ease 0.571 0.168 (3.4) 1.15 0.09 (12.1) 0.188
Safety 0.381 0.135 28) 0.132 0.117 (1.1) 0.803 0.081  (10.0) 0.197
Overall Rating 1.25 0.82 1.5) 1.39 0.51 2.7) 1.28 0.26 (5.0) 0.616
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The likelihood is a3 dimensiond integral: 1 for the agent effect and 1 for each latent variable. To estimate
the model, we substitute the structural equation throughout, and the likelihood function is then an integra
over 3 independent standard normal distributions.

The results of the moddl are provided in Table 4-5, and again we provide the base RP/SP model (shaded)
for comparison.” In this case, the latent variables of comfort and convenience are borderline significant in
the choice modd (t-stats of 1.0 to 2.3). The latent variable model appears to reasonably capture the latent
congtructs, and it does add richness to the behaviora process represented by the model. However, the
impact is certainly not overwhelming. We aso report the log-likelihood for just the choice mode portion of
the joint model. Note that there are various ways to calculate this log-likelihood. What we report is the
case in which the latent variable score and distribution are extracted using the structura equation only (a
partia information extraction), and then the log-likelihood of the choice model is calculated given this
information. This method is representative of the forecasting process, in which the measurement equation
is not used (since the indicators are not known). The log-likelihood actualy increases dightly over the base
choice model. The decrease in fit for the choice model portion does not necessarily mean that the joint
modd isinferior. Firgt, afull information extraction method (using both the structural and measurement
equations) would improve the fit of the choice mode portion (particularly since, in this case, the structural
modd is relatively weak.) Second, it is not surprising that the likelihood increases dightly, because we
compare a value that is aready optimized to the choice data (the base choice model) versus avaue that is
optimized to both the choice and indicator data, i.e., the comparison is made across different metrics. As
long as the parameters for the latent variables in the choice model are significant, then the latent variable
portion is bringing some explanation to the modd. The best method to determine the magnitude of the
benefits of the joint choice and latent variable modd is to perform forecasting tests using either a hold out
sample or real data.

Latent Class Model

For the latent class mode choice model, we estimate a model that is analogous to the random parameter
model presented in Table 4-3. However, instead of representing the unobserved heterogeneity with
random parameters, we specify that there are two distinct classes of people, each with its own set of
parameters for the 5 attributes of the alternatives. Parameters other than those for the 5 attributes are
common across the classes. The likelihood is as follows:

2
PO yTh v 1 X)) =& POyt v | Xa, S)L (S| X,)
s=1

where P(y™ ,y*, y>? | X ) isasin Equation [4-8], with the exception that there are a different set of
parameters for each class, and L (S| X|,) isabinary logit modd.

= There are 3 additional explanatory variables in the choice and latent variable model (age dummy, first class rail rider, and free
parking), which enter the latent variable structural equations. These variables were tested in the base RP/SP model and are not
significant (t-stats of 0.9, 0.4, and 0.2, respectively).
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The estimation results are presented in Table 4-6. The model suggests that there are at least two classes.
Class oneis defined by younger travelers, recreational travelers, and people traveling in groups who are
more sengitive to cogt, in-vehicle time, and transfers. Class two is defined by business travelers and older
travelers who are more sensitive to out-of -vehicle time and amenities. The sample is skewed towards
class 2 as the class membership statistics show at the bottom of the table. The 2 latent classes do provide
asignificant improvement in fit over the base mode, but the fit of the model falls well below that captured
by the random parameter model. Thisis not surprising since we did not have strong behaviora justification
for two distinct segments of the travelers, and therefore a continuous distribution provides more
explanatory power.

Combination Models

The estimation results thus far have provided examples of integrating joint RP/SP models with random
parameters, latent variable, and latent class, individually. Here we provide examples of further
combinations. Idedly, one would like to have strong behaviora justification or motivation to introduce more
complexity. In the case of our mode choice example, we redly do not. Our objectives of further
integrating the model are to both improve the overall fit and behavioral representation of the model, as well
as to strengthen the relationship between the latent variables and the choice model. Severa models are
presented below.

Choice and Latent Variable Model with Latent Class Heterogeneity of Mode Attributes

provides estimation results for amodel that is a direct combination of the choice and latent variable
model presented in Table 4-5 and the latent class model presented in Table 4-6. The generalized model
now captures the latent concepts of comfort and convenience, as well as the unobserved
heterogeneity represented by the latent class structure

Choice and Latent Variable Model with Random Parameters

Table 4-8 provides results for the latent and choice variable model in which we have added random
parameters to both the choice model portion and the structural equations of the latent variable model.
To keep the dimension of the integral down and to avoid potential multicollinearity issues, it is
important to be selective in terms of the parameters that are distributed. We selected 4 parametersin
the choice model (those with the most significant distributions from the random parameter model
presented in Table 4-3) and 3 parameters in the structural equations (those with highest significancein
the fixed parameter model presented in Table 4-5). There is a significant improvement in the overal fit
of the modd. However, again, the latent variables have only a marginal impact on the choice model .

* Note that the origina estimate of this model was empirically unidentified (the parameters trended away from zero), and so the
parameter corresponding to the RP agent effect is constrained to be equal to 1.
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Choice and Latent Variable Model with Unobserved Heterogeneity of Latent Variable
Parameters

In an effort to strengthen the relationship between the latent variable constructs of comfort and
convenience with the choice model, we experimented with unobserved heterogeneity of the
parameters for the latent variables in the choice model. First we specified the parameters to be
lognormally distributed. Next we specified the parameters as having latent heterogeneity defined by a
two-class structure, in which the latent variables only impact one of the classes. We used a naive
class membership model, because aricher specification proved to have identification problems. The
results for the choice model portion of both of these models are shown in Table 4-9. We did not report
the estimation results for the latent variable model, because they are very close to the results reported
in Table 4-5. Note that neither approach significantly impacted the choice model. Therefore to
improve the specification, the latent variable moded probably needs mgjor reworking. One possibility is
to not specify the latent variablesin their differenced form (rail-auto), and therefore specify the
measurement equations as having discrete indicators. Another possibility isto specify different latent
variable modds for different latent classes. Early experimentation with this latter approach showed
some promise.

Conclusion

We presented aflexible, powerful framework that incorporates key extensions to discrete choice models.
The experimental results we have provided using the mode choice dataset explored various specifications
and demonstrated the practicality of the generalized modd. The conclusions from the application of the
generalized model to the mode choice case study are that introducing stated preferences and random taste
variation greatly improves the specification of the model, whereas latent variables and latent classes had
less significant impacts. It isimportant to note that we cannot draw conclusions on the various methods
from the series of estimation results presented in this chapter. The results will vary based on the
application and data. For example, in contrast to the results we presented here, we have had casesin
which alatent class model outperforms a random parameter specification, and aso have had casesin
which the latent variable model has a large impact on the choice modd.
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MODE CHOICE MODEL

Table 4-6: Latent Class M ode Choice M odel

Base RP/SP Model

Latent Class Model

Parameters Common

Parameters Unique

Parameters Unique

Across Classes to Class 1 to Class 2

Parameter Est. Std. Er. _ t-stat Est. Std. Er. _ t-stat Est. Std. Er.  t-stat Est. Std. Er.  t-stat
Rail constant RP 0.444 0493  (0.9) 1.26 0756  (1.7)
Rail constant SP2 -0.466 0.777 (0.6) 142 0.772 (1.8)
Work trip dummy 1.17 051  (2.3) 1.10 0620  (1.8)
Fixed arrival time dummy 0.723 0.381 (1.9) 0.641 0.497 (1.3)
Female dummy 0.990 0.381 (2.6) 1.03 0.432 (2.4)
Cost per person in Guilders -0.0608 0.0132 (4.6) -0.231 0.063 (8.7 -0.0408 0.0115 (3.5)
Out-of-vehicle time in hours -2.23 0.83 2.7) -1.31 121 (1.2) -3.47 1.34 (2.6)
In-vehicle time in hours -0.710 0.158 (4.5) -1.69 0.48 (3.5) -0.876 0.244 (3.6)
Number of transfers -0.100 0.036 (2.8) -0.216 0.092 (2.3) -0.149 0.055 (2.7)
Amenities -0.361 0080  (45) -0.408 0114  (3.6) -0.540 0.146  (3.7)
Inertia dummy (RP Choice) 2.97 1.02 (2.9) 0.99 0.696 (1.4)
Agent effect RP 0.686 0.490 (1.4) 2.09 0.76 (2.8)
Agent effect SP2 2.44 0.50 (4.9) 2.87 0.73 (3.9)
Scale (mu) SP1 2.31 050  (4.6) 225 059  (3.8)
Scale (mu) SP2 1.31 0.30 4.4) 1.56 0.35 (4.5)
Taul SP1 (=-Tau4 SP1) -0.195 - — -0.236 - -
Tau2 SP1 (=-Tau3 SP1) -0.0127 - — -0.0154 - -
Tau3 SP1 0.0127 0.0036 (3.5) 0.0154 0.0050 (3.1
Tau4 SP1 0.195 0.049 4.0) 0.236 0.070 (3.4)
Taul SP2 -0.986 0.219 4.5) -0.895 0.210 4.3)
Tau2 SP1 (=-Tau3 SP2) -0.180 === - -0.161 - -
Tau3 SP2 0.180 0053  (34) 0.161 0.051  (31)
Tau4 SP2 1.32 0.32 (4.1) 117 0.28 4.2)
Number of observations: 4680 4680
Number of draws (Halton): 1000 1000
Log-likelihood: -4517.43 -4283.04
Rho-bar-squared: 0.380 0.411
CLASS MEMBERSHIP MODEL

Parameter Est. Std. Er.  t-stat Class Membership Statistics
Constant -0.455 0.395 (1.2) Probability(Class 1) < 0.2 for 16% of the sample
Female dummy -0.0832 0.3625 0.2) 0.2 <= Probability(Class 1) < 0.4 for 19% of the sample
Number of persons in party 0.174 0.121 1.4) 0.4 <= Probability(Class 1) < 0.6 for 62% of the sample
Work trip dummy -1.94 0.73 (2.7) 0.6 <= Probability(Class 1) < 0.8 for 3% of the sample
Age over 40 dummy -0.472 0.371 (1.3) Probability(Class 1) >= 0.6 for 0% of the sample
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Table 4-7: Choice and Latent Variable Mode Choice M odel with Latent Classes

MODE CHOICE MODEL
Parameters Common Parameters Unique Parameters Unique
Across Classes to Class 1 to Class 2
Parameter Est. Std. Er.__t-stat Est. Std. Er.__ t-stat Est. Std. Er. _ t-stat
Rail constant RP 0.293 0.905 (0.3)
Rail constant SP2 0.940 1.143 0.8
Work trip dummy 1.96 1.26 (1.6)
Fixed arrival time dummy 0.590 0.609 (1.0)
Female dummy 1.04 0.53 (2.0)
Cost per person in Guilders -0.220 0.104 (2.1) -0.0406 0.0196 2.1)
Out-of-vehicle time in hours 0.0541 1.5606 (0.0) -2.27 1.64 (1.4)
In-vehicle time in hours -1.61 0.76 (2.1) -0.909 0.375 (2.4)
Number of transfers -0.180 0.127 (1.4) -0.167 0.079 2.1)
Amenities -0.415 0166 (2.5 -0.566 0241  (23)
Latent Comfort - RP 1.32 0.69 (1.9)
Latent Comfort - SP2 1.62 0.53 (3.0)
Latent Convenience - RP 1.90 1.04  (18)
Latent Convenience - SP2 132 0.61 (2.2)
Inertia dummy (RP Choice) 0.0277 1.0414 (0.0)
Agent effect RP 2.24 1.61 (1.4)
Agent effect SP2 2.73 113 (2.4)
Scale (mu) SP1 2.21 0.92 (2.4)
Scale (mu) SP2 1.38 0.43 (3.2)
Taul SP1 (=-Tau4 SP1) -0.242 - -
Tau2 SP1 (=-Tau3 SP1) -0.0157 -
Tau3 SP1 0.0157 0.0070 (2.2)
Tau4 SP1 0.242 0.111 (2.2)
Taul SP2 -1.00 0.32 (3.1)
Tau2 SP1 (=-Tau3 SP2) -0.181 — -
Tau3 SP2 0.181 0.071 (2.5)
Tau4 SP2 1.31 0.43 (3-0)
Number of observations: 4680
Number of draws (Halton): 5000
Log-likelihood (Choice&Latent): -6423.09
Log-likelihood (Choice): -4284.96
Rho-bar-squared (Choice): 0.412

LATENT VARIABLE MODEL

Structural Equations (2 equations, 1 per column)

Comfort Equation Convenience Equation

Parameter Est. Std. Er. _ t-stat Est. Std. Er. _ t-stat
Constant - Comfort 0.132 0.158 (0.8)
Constant - Convenience 0.497 0245 (20
Age dummy - over 40 -0.540 0.400 (1.4) 0.876 0.246 (3.6)
First class rail rider 0.454 0.402 (1.1)
In-vehicle time in hours -0.519 0.324 (1.6)
Out-of-vehicle time in hours -1.23 054 (23)
Number of transfers -0.107 0.156 0.7)
Free parking dummy (auto) 0.218 0.259 (0.8)
Variance(w) 1.00 == 1.00
Squared Multiple Correlation (SMC) 0.115 0_2:&

Measurement Equations (6 equations, 1 per row)

Comfort Parameters Convenience Parameters | Disturbance Params. (StdDev(4)) Fit (SMC)
Equation Est. Std. Er. _ t-stat Est. Std. Er. __ t-stat Est. Std. Er. _ t-stat

Relaxation 0.551 0.183 (30 0.156 0134 (12 115 010 (115 0.194
Reliability 0.343 0.106 (3.2 0.462 0.090 6.1 0.887 0.055 (16.0) 0.282
Flexibility 0.716 0171 (42) 0.892 0139 (6.4) 0.352
Ease 0.570 0128  (44) 115 0.09 (135) 0.187
Safety 0.377 0.092 4.2) 0.153 0.103 1.5) 0.800 0.051 (15.6) 0.201
Overall Rating 1.10 0.38 (29 1.44 026 (55 1.37 018 (7.7 0.579

CLASS MEMBERSHIP MODEL

Parameter Est. Std. Er.__t-stat Class Membership Statistics
Constant -0.375 0.467 (0.8) Probability(Class 1) < 0.2 for 16% of the sample
Female dummy 0.0489 0.4128 0.2) 0.2 <= Probability(Class 1) < 0.4 for 18% of the sample
Number of persons in party 0.165 0.125 (13 0.4 <= Probability(Class 1) < 0.6 for 60% of the sample
Work trip dummy -1.85 0.74 (2.5) 0.6 <= Probability(Class 1) < 0.8 for 5% of the sample
Age over 40 dummy -0.496 0.384 (13 Probability(Class 1) >= 0.8 for 0% of the sample
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Table 4-8: Choice and Latent Variable M ode Choice Model with Random Parameters

CHOICE MODEL

Location Parameters Distribution Parameters
Parameter Est Std Fr__f-stat Est Std Fr l-stat
Rail constant RP 0.100 0.796 0.1)
Rail constant SP2 1.53 0.67 (2.3)
Work trip dummy 1.07 0.83 (1.3)
Fixed arrival time dummy 0.397 0.651 (0.6)
Female dummy 1.48 0.63 (2.4
Cost per person in Guilders -2.18 0.29 * 1.02 0.05 (22.1) lognormal
Out-of-vehicle time in hours 0.06 0.94 0.1)
In-vehicle time in hours 0.228 0.305 * 0.864 0.040 (21.5) lognormal
Number of transfers -2.14 0.38 * 1.76 0.15 (12.0) lognormal
Amenities -0.609 0.271 * 1.13 0.05 (22.3) lognormal
Latent Comfort - RP 2.98 0.84 (3.5)
Latent Comfort - SP2 3.08 0.87 (3.5
Latent Convenience - RP 1.54 0.37 4.2)
Latent Convenience - SP2 1.18 0.37 3.2
Inertia dummy (RP Choice) -1.05 0.57 (1.8)
Agent effect RP 1.00 -
Agent effect SP2 1.84 0.53 (3.5
Scale (mu) SP1 4.28 124  (35)
Scale (mu) SP2 2.03 0.55 3.7)
Taul SP1 (=-Tau4 SP1) -0.229 - -
Tau2 SP1 (=-Tau3 SP1) -0.0152 - -
Tau3 SP1 0.0152 0.0053 (2.9)
Tau4 SP1 0.229 0.083  (2.8)
Taul SP2 -0.812 0.220 3.7
Tau2 SP1 (=-Tau3 SP2) -0.143 - -
Tau3 SP2 0.143 0.049 (2.9)
Tau4 SP2 1.03 0.28  (3.7)
Number of observations: 4680
Number of draws (Halton): 20000
Log-likelihood (Choice&Latent): | -6066.08
Log-likelihood (Choice): -3935.04
Rho-bar-squared (Choice): 0.458
LATENT VARIABLE MODEL
Structural Equations (2 equations, 1 per column)
Comfort Equation Convenience Equation
Location Parameters Distribution Parameters Location Parameters Distribution Parameters
Parameter Est. Std. Er. _ t-stat Est. Std. Er.  t-stat Est. Std. Er. tstat Est. Std. Er.  t-stat
Constant - Comfort 0.0688  0.1362 (0.5)
Constant - Convenience 0.649 0.239 2.7
Age dummy - over 40 -0.435 0.145 (3.0) 0.961 0.286 3.4) -0.281 0.072 3.9)
First class rail rider -0.434 0.211 (2.1)
In-vehicle time in hours -3.03 0.43 * 1.964 0.154 (12.7)
Out-of-vehicle time in hours 0.246 0.386 * -0.674 0.133 (5.1)
Number of transfers -0.294 0.126 (2.3)
Free parking dummy (auto) 0.147 0.180 (0.8)
Va_riance(W) 1.00 ---- --- 1.00 ---- -
Measurement Equations (6 equations, 1 per row)
Comfort Parameters Convenience Parameters Disturbance Params. (StdDev(*h)
Equation Est Std Er_t-stat Est Std Er 1-stat Est Std Er i-stat
Relaxation 0.408 0.138 (3.0) 0.136 0.084 (1.6) 1.20 0.07  (16.4)
Reliability 0.220 0.100 (2.2 0.402 0.072  (5.6) 0.896 0.052 (17.1)
Flexibility 0.603 0.109 (5.6) 0.870 0.087  (10.0)
Ease 0.453 0.085  (5.3) 1.16 0.07 (15.8)
Safety 0.242 0.095  (25) 0.152 0.069  (2.2) 0.838 0.044 (19.1)
Overall Rating 1.05 0.13 8.1) 112 0.12 (9.0 1.39 0.14  (10.0)
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Table 4-9: Choice and Latent Variable M odels with Heter ogeneity of Latent Variable

CHOICE MODEL (Latent Variable Portion not Shown)

Parameters

Choice and Latent Variable RP/SP Model
with Randomly Distributed Parameters (Lognormal)

Choice and Latent Variable RP/SP Model
with Latent Class Heterogeneity

Parameter Est. Std. Er. t-stat Est. Std. Er. _ t-stat Est. Std. Er.  t-stat Est. Std. Er.  t-stat
Rail constant RP -0.390 0.707  (0.6) -0.391 0.722 (0.5)
Rail constant SP2 -0.856 0.748 @1 -0.908 0.778 1.2)
Work trip dummy 1.76 074 (24 1.72 0.66 (2.6)
Fixed arrival time dummy 0.707 0504 (14 0.702 0.520 (1.4)
Female dummy 1.16 048 (24 117 048 (24
Cost per person in Guilders -0.0637 0.0165 (3.9) -0.0635 0.0174 3.7
Out-of-vehicle time in hours -1.09 o8s (1.2) -1.14 0.99 1.2)
In-vehicle time in hours -0.728 0192  (38) -0.726 0.198 @37)
Number of transfers -0.103 0040 (26 -0.103 0.041 (2.5)
Amenities -0.377 0100 (38 -0.376 0.104  (36)

Location Parameters

Distribution Parameters

Class 1 Parameters

Class 2 Parameters

Latent Comfort - RP 0.161 0.699 * 0.187 0.787 0.2) 1.34 0.94 1.4) 0.000 . @
Latent Comfort - SP2 0.186 0.391 * 0.340 0.079 (4.3) 1.42 0.63 2.3) 0.000 e e
Latent Convenience - RP 0.267 0.467 * 0.314 0511 (06) 1.48 061 (24 0.000 e e
Latent Convenience - SP2 -0.252 0.359 * 0.214 0.115 (1.9 0.834 0.366 23) 0.000 e e
Inertia dummy (RP Choice) 2.56 1.07 (2.4) 2.62 121 22)
Agent effect RP 0.256 0.566  (0.5) 0.125 0.571 (02)
Agent effect SP2 2.10 061 (35) 2.12 0.66 (3.2
Scale (mu) SP1 2.20 0.58 (3.8) 221 0.61 (3.6)
Scale (mu) SP2 1.26 038 (33) 1.24 041 (3.0)
Taul SP1 (=-Tau4 SP1) -0.204 -0.204
Tau2 SP1 (=-Tau3 SP1) -0.0133 -0.0132
Tau3 SP1 0.0133 0.0043 (3.1) 0.0132 0.0044 (3.0
Taud SP1 0.204 0.060 (34 0.204 0062 (33
Taul SP2 -1.03 031 (34 -1.05 034 (3D
Tau2 SP1 (=-Tau3 SP2) -0.189 -0.192
Tau3 SP2 0.189 0.064 (3.0 0.192 0070 @7
Tau4 SP2 1.39 043 (32 1.41 049  (29)
Number of observations: 4680 4680
Number of draws (Halton): 10000 10000
Log-likelihood (Choice&Latent): | -6655.79 -6655.96
Log-likelihood (Choice): -4518.08 -4518.19
Rho-bar-squared (Choice): 0.379 0.380
CLASS MEMBERSHIP MODEL
Parameter Est. Std. Er.  t-stat
Constant 2.50 1.39 (1.8)

Summary of Latent Variable Parameters from the Different Models

Parameter

Latent Comfort - RP

Latent Comfort - SP2

Base Random Parameter Latent Class
Model: Model Model Model
Fixed Mean Std. Dev. | Class1 Class 2
1.16 1.20 0.23 1.34 0.000
1.16 1.28 0.45 1.42 0.000
Latent Convenience - RP 1.30 1.37 0.44 1.48 0.000
Latent Convenience - SP2 0.764 0.795 0.173 0.834 0.000
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Chapter 5;:

Conclusion

Summary

We started the discussion by pointing out the gap between traditional discrete choice model and behaviora
theory, which is depicted in Figure 5-1. Researchers have long been working on a host of different
enhancements to improve the performance of discrete choice model. These new techniques are mostly
explored and applied in isolation from one another. In order to develop models that are behavioraly
realigtic, reflecting anything close to the complexity depicted in Figure 5-1, we must draw on a toolbox of
methodologies. To meet this end, we proposed an generalized discrete choice modeling framework (Figure
5-2) that incorporates key extensions to the discrete choice modd, including:

The ability to represent any desirable (additive) error structure via the parameterized disturbance with
factor analytic form, enabling us to relax the I1A restriction as well as represent unobserved
heterogeneity, for example, in the form of random parameters;

The use of different behavioral indicators, including revealed preferences, stated preferences, and
psychometric data, al of which provide insight on the choice process;

The capability of explicitly modeing the formation of important latent behaviora constructs, such as
attitudes and perceptions, and their effect on the choices; and

The capacity to represent latent segmentation of the population (or multimoda behavior, for example,
leisure or rushed time) as well as the respective tastes, decision protocols, and choice sets of each
segment.
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The basic integration technique that is recommended is to start with multinomia logit formulation, and then
add extensions that relax simplifying assumptions and enrich the capabilities of the basic model. This
technique resultsin a‘logit kernel” formulation of the moddl, and leads to a straightforward probability
smulator for use in maximum smulated likelihood estimation.

We provided estimation results using a mode choice application to demonstrate and test the use and
practicality of the generalized model. Some of our applications result in large improvementsiin fit aswell as
amore satisfying behaviora representation. However, in some cases the extensions have no impact on the
choice model. These latter cases provide the valuable information that the parsimonious structures are
robust.

In addition to the overall generalized model, we aso provided expanded coverage of two of the key
methodol ogies that make up the generalized framework. The first methodology that we emphasized was
the logit kernel model (Figure 5-3), which is a discrete choice model in which the disturbance is composed
of a probit-like multivariate normal (or other) distributed term and an i.i.d Gumbel term. We showed that a
factor analytic specification of the disturbances can be used to specify all known (additive) error
structures, including heteroscedasticity, nested and cross-nested structures, and random parameters. The
inclusion of thei.i.d Gumbel term leads to a convenient smooth probability simulator, which alows for
straightforward estimation via maximum simulated likelihood. A key contribution is our investigation of the
normalization and identification of logit kernel models. We found that it is not necessarily intuitive, and the
rules can differ from those for the systematic portion of the utility as well as those for analogous probit
models. We established specific rules of normalization and identification for many of the most common
forms of the logit kernel model. We aso presented empirical results that highlighted various specification
and identification issues.

The second emphasized methodology was the development of a general framework and methodology for
incorporating latent variables into choice models. The framework is shown in Figure 5-4; it is essentidly
the integration of the latent variable methodologies devel oped by psychometricians and a classic discrete
choice modd. This method is critical for developing behaviorally redlistic models, because so many of the
constructs that cognitive researchers emphasize as being essential to the choice process (for example, the
ovasin Figure 5-1) cannot be directly measured. However, we can build surveys that gather psychometric
data on al aspects of the choice process, and then use these data to aid in specifying the structural
equations of the choice model.

159



Explanatory
Variables X

i .e=FTz+n
"

|
v

Choice
Indicators y

Figure 5-3: Emphasized M ethodology | —
Factor Analytic Parameterized Disturbance with Logit Kernel

Explanatory \
Variables X

\ > Latent Variable
Model
—_, | tatentvariable
Variables X* Indicators |

Choice
Indicators y

~

Choice Model

Figure 5-4: Emphasized Methodology |1 —
Integration of Choice and Latent Variable Models

160



Research Directions

The methodology presented here and the empirical case studies have merely brought to the surface the
potentia for the generalized modeling framework. These are relatively new, untested methods, and they
require further investigation into numerous issues, including:

Applications: Thefirst issueis simply that more testing and experience with applications are necessary to
uncover related issues and to better understand the potential of the generalized framework.

Validation: Thus far for validation we have looked at aspects such as the goodness of fit, significance of
the parameters that are part of the extensions, and smply examining the behavioral process represented
by the model structure. The findings so far suggest that the advanced methodol ogies provide promise.
Now more work needs to be done in conducting validation tests, including tests of forecasting ability,
consequences of misspecifications (for example, excluding latent variables or heterogeneity that should be
present), and performance comparisons with models of simpler formulations.

Identification: Thereisaneed for further exploration of identification and normalization issues, including
pursuit of general necessary and sufficient rules for identification as well as continued compilation and
analysis of special cases and rules of identification. Also more fundamental identification issues of
identification need to be explored related to, for example, the shape of the objective function.

Comparison of Various Approaches for Estimation, Smulation, and Specification: One of the things
we do in this dissertation is suggest a particular modeling approach in terms of estimation (maximum
smulated likelihood), simulation (Haton draws and logit kernel), and specification (the use of the factor
analytic disturbance to reflect the covariance structure). We suggest these approaches because it leads to
aflexible, tractable, practical, and intuitive method for incorporating complex behaviora processesin the
choice model. However, there are alternative approaches in each of these directions, method of smulated
moments; other types of pseudo- and quasi-random draws; semi-parametric approaches, empirical Bayes
estimation (versus classic techniques); probit and the GHK simulator; classic nested, cross-nested, and
heteroscedastic logit formulations, and many more. We need a better understanding of the relationships
among various techniques, and the implications of various specifications. In addition, investigations into
new techniques such as the Combined Logit Probit model described in Chapter 2 would be vauable.

Dynamics: We have not directly addressed the issue of dynamics in this dissertation, although dynamicsis
clearly acritical aspect of behavior. With the existing generalized framework, the choice indicators could
be of pandl data form, and it is then relatively straightforward to introduce standard dynamic choice
modeling techniques into the framework. However, a more elusive issue is that of feedback, which is very
prevalent in behaviora theory, and more thought needs to be put into this area.

Computation: Applying these methods are computationally intensive. Etimation time varies significantly
with the particular application. The models presented in Chapters 2 and 4 were estimated using 550-733
MHz Pentium Il processors. Depending on the specification, they took on the order of either hours or days
to estimate. For example, the telephone service models in Chapter 2, which involve only 434 observations,
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took less than an hour. The mode choice models presented in Chapter 4 that did not involve random
parameters took on the order of several hours (more observations than the telephone dataset and aso a
more complex logit kerngl with its RP/SP specification). The models using synthetic datasets in Chapter 2
(which have 10,000 observations) and the random parameter mode choice models in Chapter 4 took on the
order of aday (24 hours) to estimate. Furthermore, all of the models presented in this dissertation are
relatively smal in terms of the number of observations and number of aternatives, and therefore the
estimation time for real applications could easily extend to over aweek. Due to the long estimation times,
investigation into techniques such as paralld computing, for which smulation is a perfect application, would
gresatly ease the application of such models.

Data: One of the key ideas of the generalized framework is to make use of various types of indicators
that can provide insight on the choice process. These include the revealed preferences, stated preferences,
and attitudinal and perceptua indicators that are dealt with in some detail in this document. More generaly,
it includes any type of verbal or other indicator for the behavioral process depicted in Figure 5-1, induding,
for example, verbal descriptions of decision protocols. Cognitive researchers as well as others have long
investigated data collection and surveys, and this research needs to be synthesized in conjunction with the
behaviora framework and generalized methodological framework.

Behavioral Framework: Our focus throughout the dissertation has been on methodological tools and not
on the substantive issues in psychology and behavioral sciences. The generdized framework provides
potential to reflect behaviord theory that has here-to-for primarily existed in descriptive, flow-type models.
Clearly, application requires careful consideration of the behavioral framework, strong behaviora
justification for the added complexity and, ideally, design of a data collection effort that generates good
indicators and causal variables to support the framework.

Conclusion

Behavior is clearly complex, and the basic discrete choice mode is a smplistic representation of this
behavior. We have the tools available to improve the behavioral representation of models by integrating
methods that exploit the use of different types of data, capture unobserved heterogeneity for al aspects of
the choice process, and explicitly model behaviora constructs such as attitudes and perceptions. With
increasing computational power and increasingly rich datasets, techniques such as those described in this
dissertation can be practically applied and offer great potential to better understand behavior and test
behaviord hypothesis, ingtill confidence in parsimonious specifications, and improve forecasts. The
approach presented in this dissertation is aflexible, powerful, practica, intuitive, and theoretically grounded
methodology that alows the modeling of complex behavioral processes.

There are till practical questions. How much of a difference do these techniques make? It is highly
dependent on the question being asked, the behavior being modeled, the strength of the behaviora
framework, and the quality of the data. Do we really need to capture the inner workings of the black box
if we are only interested in the bottom line choices? It is certainly debatable. However, the best way, and
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perhaps the only way, to answer the question is to explore more behaviorally realistic models and then
compare their performance against parsimonious specifications.

The best test of this framework would be to start with a Situation in which there are strong behaviora
hypotheses and objectives for the modeling; then develop a methodological framework that represents the
assumed behavior (making use of the various methodologies and potentia data sources); then develop a
data collection plan to gather data that supports the framework, and then estimate a series of models to
test the impact of various levels of complexity. The problem is, that each of these four stages is difficult:
we are dedling with behavior like in Figure 5-1 and complex equations.

The bottom line is that we need to continue to explore, and the answers lie in bringing together the
techniques and expertise of econometricians, psychometricians, cognitive researchers, and market
analysts.
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Appendix A: Normalization of
Unrestricted Probit and Logit
Kernel Covariance Structures

This appendix examines the normalization of unrestricted probit and logit kernel models. The important
point is that while the normalization of pure probit leads to straightforward scale shifts of all of the
parameter estimates, thisis not the case for logit kernel.

Case 1: Probit with 4 Alternatives
Using the notation from Chapter 2, the unrestricted four dternative probit modd written in differenced
form hasthe error sructure Tz, where:

é,/m 0O 0 U
T= S,./m a,/m 0 |
Qg /m az/m agz/md

Note that we use a ’sinstead of S 'ssince these aren’t variance terms. Also 1 isthe scale of the probit
mode (i.e., not the traditional Gumbel m).

The covariance structure is then (using new notation):

¢ (ayy)/ v 0
TT' theoretical : g(ana21)/rT12 @z +al)l fif 3
Qapay) /Mt (,@s+a80)/ M @5 +as, +ay)/nty

A normélization must be made in order to achieve identification. Normalizing a,, =a |y , and noting the
unknown parametersas a and m, then the normalized covariance dructureis.
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TT' normalized :

( u) 1
as) i, ((@s) i) )
anale)/ﬁﬁ (abal +aal)/ng ((a

HZ

ﬂ;D)_&PN'D_G). @D D> D~

31
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=
N

Setting TT ' normalized = TT"' theoretical , leads to the following equations.

(a2 1mé = a,

)Z/m2

(allasl) /it

) i ((an)%(azf)/mz

sion (at)' = (a)
_a,a,
azf\i 11321?
aN:aua31@
31 a.l’;‘_ ~
=) <o)t (e2)
aN:iaéamasl"'azzam)ﬁ_aleaeﬁ?
(aa) +(az) +(ah)" _Ba) *@a) +(ax
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Therefore, for probit, the normalization just scales al of the parameters, and any postive normdization is
acceptable.

Case 2: Logit Kernel with 4 Alternatives
Now, we will show that the equivaent logit kernel case is not so straightforward. Following the same
process, the covariance matrix of utility differences for the four aternative unrestricted logit kernel model
is

{%(aﬁ +Zg)/m2

¢

galla21+g)/rnz (3221"'3222"'29)/rrF

gauam + g)/ nf (a21a3l taAyp t g)/ rf (a 231 +a§2 +a§3 + 29)/ rf

TT'+G
theoretical :

[t enlY el enY en i eni?

Imposing the normalization a,; =a 4 leadsto:

TT'+G
normalized :
a)\) +2g|/n¢

(atad+a)in ((ak) +(ad) +2q)/ g
(asal+g)/nt  (afad+atal+g)int  ((ak) +(ak) +(a}) +20)r 0ty

D> D
A

ey e e ey e end

(WD D> D> (D> D

Setting the normalized covariance structure to the normalized structure leads to the following equations
(the C notation is just to clean up the math later on):

((al“{)2+29)/m,\, (af +2g)/m*e C
) :(a a +g)/n12° C,
a1a1+9) =(ayaq* g)/ne C,

/g = (a§1 +al, + Zg)/ e C,

a21a31 +a22a' +g)/nﬁ (a21a31 +a22a32+g)/rn20 CS

(a2
(
(a 1) +(ak) +20
(
fe5)

)+ (@) +29)/nf = (a4 +ak +ad +2g) i e c,
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And solving for the estimated parameters in the normalized model leads to:
2
(alNl) =G - 29
a N — Cznﬁ -g
21
\lclnﬁ - 29

N _ Csnﬁ'g

te '\lclnﬁ - 29

(a%) =cum - 29- emt-9)

Clnﬁ - 29

_g- (CZrnfi - 9)(%”\3 - g)
N _ (Clmi - 29)

(Cznﬁ - 9)2
\/Cﬂ’rﬁ - 29- m
e

& (Cznﬁ - g)(CSn’ﬁl - 9)92 9
o

(conf - g)° +§Csmz“ "9 (cnf, - 29)

¢
¢

G ¢ G- 29 (Crt - o)
: R T :

>+ (a}) 207

Unlike probit, thisis not a smple scae shift, i.e., the moddl must adjust to the normalization in complex,
non-linear ways. Furthermore, it is not clear from these equations what the potential restrictions are on the

normdization.

Empirica results exploring the normaization issue for a4 aternative unrestricted logit kernel model are
shownin Table A-1. The table includes estimation results using two different synthetic datasets (the true
parameters vary across the datasets). There are 4 aternatives, and the model is specified with three
alternative specific dummy parameters, one explanatory variable, and then an unrestricted covariance
structure. The final column in the first table shows that, under some circumstances, restricting a,, to zero
isan invalid normalization. The remaining estimation results suggest that restricting a ,, to zero isavalid
normalization regardless of the true parameter estimates. However, these results are not conclusive.
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Table A-1: Normalization of Unrestricted Logit Kernel Model
(2 Synthetic Datasets; 4 Alternatives; 10,000 Observations; 1,000 Halton draws)

Unidentified Valid Normalizations Norlmm;ﬁggtion
Parameter True Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
& Alt. 1 dummy 1.0 1.38 (2.8) 0.93 (115 1.02 (118 1.31 (121 0.76  (124)
E Alt. 2 dummy 1.0 1.28 (2.8) 0.85 (10.2) 0.94  (103) 121 (105 0.67 (110
;‘: Alt. 3 dummy 0.0 003 (03 0.04 (05 0.04 (05 0.03 (03 002 (03
___ Variable 1 -1.0 -1.37 (2.9) -0.93  (235) -1.02  (25.6) -1.30  (289) -0.76  (385)
all 2.0 3.16 (2.1) 1.60 (9.0 196 (113 294  (157) -0.34 (31)
o a2l 1.0 1.75 (1) 0.86 @37 1.09 @7 1.63 (6.2) =239 (15.1)
:E a3l 2.0 2.86 (2.7) 2.01 (9.0 2.13 (9.4) 270 (109 -1.12 (8.9)

E a2 3.0 4.62 (2.6) 2.89  (146) 325 (162) 435  (19.) 0.00
- a32 1.0 1.79 (2.5) 1.16 (6.9) 1.27 (7.8) 1.69 (9.3) -0.01 (0.0)
a3’ 1.0 2.20 (1.7) 0.00 1.00 2.00 0.00 (0.0)

(Simul.) Log-Likelihood: -7973.176 -7974.867 -7973.843 -7973.187 -7998.768

Unidentified Valid Normalizations
True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat
. Alt. 1 dummy 1.0 094 (85 0.92 (9.4) 0.92 (9.4) 0.92 (9.4) 0.94 8.9
E Alt. 2 dummy 1.0 0.95 8.2) 0.93 (9.0 0.92 9.1 0.93 9.1) 0.96 (8.4)
:Ei‘ Alt. 3 dummy 0.0 0.18 (1.5) 0.17 (1.5) 0.17 (1.5) 0.17 (1.5) 0.18 (15)
____ Variable 1 -1.0 -0.86 (17.1) -0.85  (31.8) -0.85  (31.8) -0.85  (3L6) -0.87  (27.7)
all 2.0 1.43 (5.3) 1.37 (6.9) 1.37 (6.9) -1.38 (7.0) 1.45 (7.2)
o a2l 1.0 0.79 (“6) 0.76 (.0) 0.76 (5.0) -0.76 (5.0) 0.80 (5.3)
:E a3l 2.0 2.53 (3.9) 2.50 3.8) 2.48 (3.8) -2.50 (3.9) 2.56 (3.9)
E az 1.0 0.39 (0.9) -0.22 (1.6) -0.22 (1.6) -0.25 (1.6) 0.43 (1.9)
- a3 1.0 3.19 12 487 (142 -4.78  (138) 446  (120) 3.03 (5.4)

a33 6.0 3.83 (1.5) 0.00 1.00 2.00 4.00

(Simul.) Log-Likelihood: -8983.725 -8984.556 -8984.62 -8984.222 -8983.735

Case 3: Logit Kernel with 3 Alternatives
The three dternative logit kernd caseis a bit easier to compute. Following the same process as above:

. @y/m 0 U

T: @ )

@, /m a,/m
TT+G g(all)ZJrzg)/mz :
theoretical : g(allazﬁg)/mz ((a21)2+(a33)2+29)/mz§
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TT+G (alhi)2+29)/”ﬁ

normelized: - g(atat +g)int ((ah) +(ak) +2g)

D:D> D>

S ((al“i)2+2g)/nﬁ =((a11)2+29)/m2 °C,

(alNla;ll-l-g)/nﬁ = (ana21+ g)/mZo G,

(a4) +(as) +20) it = (2. + (as) +20) P
Solution
V= Jont - 2 o aN=—_SM-0
all 1nﬁ g or a11 JCSnﬁ i aé _ 29
az“'ﬁ% L OF L alez\/Cgm,i-(afT)z-ZQ
(20c.- ¢+ +(ak) ) :

®

: _
¢+ o crcy s e olei- o[ -2afai ) - 2w )z

= 2(C22' C1C3)

g

U
Here, the restrictions are
(ZQ(Cl- CZ+C3)+(af’}')2C1)2 - 4(c; - clcg)(- 2g(a§)2- 392) 30,
nt >0,
C,n’-29>0 ...0r... C,;nt- (af'}‘)2 -29>0,

N

2 2
all aZI. + (a ff

)2) -(afa%)® 0, wherea, = f@ag) anda, = f@y) ,

and only 1 of the two possible n? satisfies the conditions.

Again, it's not clear in which cases these restrictions become limiting. Our empirical tests suggests that the
normalization of the lowest diagona element in the cholesky matrix is, in fact, a valid normalization
regardless of the true parameters (unlike, for example, the heteroscedastic case).
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Appendix B: Structural Zeros in
Random Parameter Models

For random parameter models in which a subset of possible covariances are estimated, there is an issue as
to how to impose the constraints in order to obtain the desired covariance structure. For example, in the
random parameter model presented in Chapter 4, say we want to include covariances among the travel
time parameters and not among al 5 random parameters.

Recall that the random parameter logit kernel model is specified as.
U,=Xb+XTz, +n,,
where the notation is as in Chapter 2.

The issue arises because the congtraints are placed on the Cholesky Matrix, T , and not the covariance
structure TT ¢. The key isthat introducing the constraint T; = O does not necessarily lead to the
equivalent cdll of the covariance matrix TT ¢ to be zero.

Guideline for Imposing Structural Zeros

The solution is to place the structural zeros in the left-most cells of each row in the Cholesky. If thisis
done, then TT ¢ will have the same structure as T . To implement this may require reorganizing the data
(i.e., specification). We first provide an example below, and then prove the result using the general case.
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Example

Say we have 3 variables with random parameters, and we desire the following covariance structure (i.e., 2
of the 3 covariance terms estimated):

ésn Sa Sa

-I_rq::gSZl Sp O

gssl 0 sg

[« o nY ey ey end

The following restriction on the Cholesky does not retain the structural zero in the covariance matrix:

‘e N P 2 N
Eﬁﬂ 0 0 l,J ? ap; ayaq, aza;y l:'
T=%, a, o> Tre= 2 +a i
=@a Ax a =@ xdy; axtady  aAszdy () -
= - ~ ) 5
B, 0 axf galan az@y, agtagy

But by reorganizing the variables (variable 2, variable 1, variable 3), we get the correct two of three
covariances estimated:

. N 2 N

EP‘ZZ 0 0 u €a, A 85 0 u

T=% 0d >  TTe= 2 +a? i
—@a Ay a =@ xdyp aAptap  Axydy () -

A . A 2 2 1)

g0 ay agf & 0 agdy Ay taghH

General Case
A generd cholesky matrix can be written as follows:

a, 0
e u
éa21 ay U
T _€a; a3 ag u
gy dp 8y, 8y a
é E . . . l]
é u
1 Qg Qgz gy o Qg aowertriangular

The covariance matrix is then:

V =TT¢, where

K
V; =V, = é aud and i < j , which smply takes advantage of the symmetry.

k=1
The conditions of interest are those under which V;; * 0 and V;; =0.

() V;*0aslongasa; * Oanda; * 0.
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Explanation: V;; =...+a;a; +..1 0.

() V, =0 ifag,..a, =0.

Explanation: V; =TT, where T, isthe i" row of T and T, isthe " row of T .

Thefirst | elementsof T. are zero (due to the restriction),

thelast K- | elementsof T, are zero (due to the lower diagond structure of the Cholesky),
whichleadsto V; =TT, =0.

Therefore, as long as the data are reorganized such that the structural zeros are entered at the beginning
of each row of the Cholesky matrix, then the structure of the covariance matrix (TT ¢) will match the
structure of the Cholesky matrix (T ).
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Appendix C: Identification of
Agent Effect Parameters

This appendix examines the identification of agent effect parameters as described for the joint revealed
and stated preference models described in Chapter 4.

General Specification
The genera utility equation for aternative | , person n, and response

anq = Xjnqb+y h

n. +n.
I on anQ'

The utility consists of:

asystematic portion X, b,
the agent effecty h ., and

i hino

aGumbe whitenoisen ., which has variance g/nt .

ing

3 Alternative Model, 2 Responses per person:
In levels form, the utilities are as follows:

U for response 1 from person n: U = Xub +y hy +ny,
Uoy = Xonb +y hp, 0y, and
U3n1 = XSnlb +y J‘Sn +n3n1 .

U for response 2 from person n: U, =X,,b+y h, +n,,,
Usno = X b+y iy +0,,, , and
U3n2 = >(3n2b +y 3h3n +n3n2 )
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Assuming the h’s are independent, the covariance matrix is:

CO\(U jnly U jn2) =

élll+g/m2 l‘;l
e u
& 0 y22+g/I’T‘I2 G
€ 0 0 y 5 +g/m’ v
e u,
(f,‘ Yu 0 0 yn"'g/mz l;|
g 0 Y 2 0 0 yp,+g/nt o
g O 0 Y 2 0 0 Y st 9/ Nty
wherey | =(yi)2.
The Utility Differences are as follows:
Response 1. Upi - Ug =ty Ny -y g, +05- 0, and
U2n1' U3n1 =..ty J]Zn' y J13n TNy - Ny

Response 2: Upo - Ugp, =ty iy -y hg +n, -0y, and

Ujno = Uznp =ty Ny = Y gy #0515 - N5y
The covariance matrix of utility differencesis:

Cov(DU,,,,DU ;) =

g/n+y33+29/n12 3
é 3/33+g/rrF 3/22"'3/33+29/m2 ua
g Yty Y a3 3/11+Y33'|'2(}]/rr|2 3
e Y 33 Y 2+ a3 Yaat0/m* y,+y g +2g/nth
Applying the rank condition:

8 11'*'y3:9,"'29/"”2[;I gl 0 1 2

e u & U

é’22+y33+29/mzlj g) 11 20

é + a @ 0 1 1u
vecu(Cov(DU ;,,,DU ,,)) = & Y s+ g/t U - Jacobian: & 4~ Rank =4

@ Yty s l.:J él 01 Ol]

é ua 4 1 ou

S Vs © 010

8 Y»tYx 0@ 53 1 1 0g

Therefore, we can estimate al 3 of the agent effect parameters and the only required normalization isto
m. Empirica verification of this result using synthetic datais provided in Table C-2.
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Table C-2: Empirical Tests of Agent Effect Normalization

Synthetic Data

3 Alternatives, multiple responses per respondent.

Beta is a generic parameter for an attribute.

Alphas are the alternative specific constants (Alpha_3 is the base).
Psis are the agent effect parameters.

Base tests (1000 records, 500 Halton draws)

rue  Parameter Est StdErr t-stat Est StdErr t-stat Est StdErr {-stat Est StdErr t-stat
1.00 Beta 1.04 0.15 (6.9) 1.03 0.15 (6.9) 1.03 0.15 (7.0) 1.06 0.15 (7.2)
1.50 Alpha_1 1.23 0.53 (2.3) 1.26 0.52 (2.4) 117 0.59 (2.0) 0.24 0.46 (0.5)
1.50 Alpha_2 1.23 0.56 (2.2) 1.19 0.62 (1.9 1.40 0.52 2.7 0.28 0.43 (0.6)
1.00 Psi_1 1.32 0.62 (2.1) 0.00 - e 231 0.27 (8.5) 3.48 0.51 (6.9)
2.00 Psi_2 1.83 0.50 (3.6) 2.21 0.27 (83) 000 e e 3.32 0.47 (7.0)
400 Psi 3 4.05 0.60 (6.8) 431 062 (6.9) 408 0.55 (1.3) 000 oo 0 o

Log-likelihood -706.76 -708.26 -707.61 -737.32

# respondents 100 100 100 100

# responses/respondent 10 10 10 10

# of records 1000 1000 1000 1000

# of draws (H) 500 500 500 500

Doubling the number of draws. and everything is within a standard error

rye  Parameter Est StdErr 1-stat Est StdErr 1-stat
1.00 Beta 1.04 0.15 (7.0) 1.03 0.15 (6.9)
1.50 Alpha_1 1.11 0.54 (2.1) 1.25 0.52 (24
1.50 Alpha_2 1.24 0.54 (2.3) 1.19 0.62 (1.9)
1.00 Psi_1 1.67 0.56 (3.0 0.00 - e
2.00 Psi_2 1.56 0.58 2.7) 2.23 0.27 (8.3)
4.00 Psi 3 398 059 (6.8) 427 061 (6.9)

Log-likelihood -706.49 -708.23

# respondents 100 100

# responses/respondent 10 10

# of records 1000 1000

#of draws (H) 1000 1000

Using 10 times the number of respondents, and the parameters get closer to true.

rye  Parameter Est StdErr fstat
1.00 Beta 0.98 0.05 (20.8)
1.50 Alpha_1 1.46 0.16 9.1)
1.50 Alpha_2 1.50 0.16 (9-1)
1.00 Psi_1 1.25 0.20 (6.3)
2.00 Psi_2 1.77 0.15 (11.9)
400 Psi 3 376 018 (21.4)

Log-likelihood -7257.34

# respondents 1000

# responses/respondent 10

# of records 10000

# of draws (H) 500

2 Alternative Model, 2 Responses per person:

In levels form, the utilities are as follows:

U for response 1 from person n:

U for response 2 from person n:

Uiy = Xiub +y hy, +nyy
U,y = Xomb+y hy +n,
Ui, = X b +y hy 0y,

U2n2 = x2n2b+ y 2h2n+ n2n2
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Assuming the h’s are independent, the covariance matrix is:

&, +g/nt u

S 0 y ., +g/nf ‘
CoU ., Ujp) = g ” i

e Yu 0 Yy +g/nt o

2 0 Y » 0 Y 2 +g/ntg

The Utility Differences are as follows:

Response 1. Upi- U =ty g -y o #ng -nyy
Response 2: Upo - Upe =ty g -y Dy 05 - 0y

The covariance matrix of utility differencesis:

):gyn+yzz+29/m2 y

Cov(DU ., ,DU (
" & YutVax Y 1ty 5 +29/ P

jn2

By inspection, we can only estimate one agent effect parameter, and the normalization is arbitrary.
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Appendix D: Specification and
Estimation of the Components of

the Generalized Discrete Choice
Model

In this appendix, we provide more detail regarding the specification, estimation, and identification of each
of the components included in the generalized discrete choice model presented in Chapter 4.

Factor Analytic Disturbances and Logit Kernel

Specification
The disturbance of the logit kernel model has a probit-like portion aswell as an i.i.d. Gumbe portion, and is
specified as follows:

eI"I = I:I"I)(ﬂ +nn ! [D_l]

where X, isan (M 1) vector of M multivariate distributed latent factors, F, isa (J,” M) matrix of
the factor loadings that map the factors to the error vector ( F, includes fixed and/or unknown parameters
and may also be a function of covariates), and n,, isani.i.d. Gumbel term. For computationa reasons, it is
desirable to specify the factors such that they are independent, and we therefore decompose X, as
follows:

X =Tz | [D-2]

n n

where z , areaset of standard independent factors (often normally distributed), TT * is the covariance
matrix of X, and T isthe Cholesky factorization of it. To simplify the presentation, we assume that the
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factors have standard norma distributions, however, they can follow any number of different distributions,
such as lognormal, uniform, etc.

Subdtituting Equations [D-1] and [D-2] into the standard random utility equation, yields the Factor Andytic
Logit Kernel Specification (the framework for which was shown in Figure 4-2):

U,=Xb+FTz, +n_, [D-3]

where: F isa(J” M) matrix of factor loadings, including fixed and/or unknown

parameters,

n

T isan (M~ M) lower triangular cholesky matrix of unknown parameters,
where TT'=Cov(Tz,),

z, isan (M " 1) vector of unknown factors with independent standard
digtributions, and

U, X, b,n aeasinthebase MNL modd.

The covariance structure of the mode! is:
cov(U,)=FTT'F,'+(g/m)l,,
where |, isa (J~ J) identity matrix, and g and m are asin the base MNL model.

F.Tz, providesfor flexibility, as highlighted by the special cases presented below, and n, adsin
computation, as will be explained in the section on estimation.

Special Cases

The logit kernel modd with its probit-like component completely opens up the specification of the
disturbances so that any desirable error structure can be represented in the model. In particuar, severa
useful special cases of the model are:

Heteroscedastic

The heteroscedastic model relaxes MNL'’si.i.d. Gumbel error structure by alowing the variances to vary
across dternatives. The model is specified as:

U,=Xb+Tz +n,,

where: F. fromthe generd logit kernel equation [D-3] equds the identity matrix,

n

T is(J" J) diagonal, which contains the standard deviation of each aternative,

. is(3° ).

z
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Nested & Cross-Nested Error Structures

Models that are analogous to nested and cross-nested logit can a so be specified. The nested logit kernel
mode is as follows:

U,=Xb+FTz +n_,

where: z, is(M”" 1), M isthe number of nests, and one factor is defined for each nest,

n

_11 ifalternativej isamember of nest m

F is(J”M), F_= ) , and
( ) Fim %0 otherwise

T is(M~ M) diagonal, which contains the standard deviation of each factor.

In adtrictly hierarchical nesting structure, the nests do not overlap, and FF ' isblock diagond. In a cross-
nested structure, the alternatives can belong to more than one group.

Error Components

The error component formulation is a generalization that includes the heteroscedastic, nested, and cross-
nested structures. The model is specified as follows:

U,=Xb+FTz_ +n_,

where: F isa(J” M) matrix of fixed factor loadings equal to O or 1,

_ 11 if theni" element of z , appliesto dternative

— I . 1
10 otherwise

jm

z,, T aredefined asin the generd case (Equation [D-3]).

Factor Analytic Errors

The Factor Analytic specification is a further generdization in which the F,, matrix contains unknown
parameters. The model is written as in the general case:

U,=X,b+FTz +n, .

If T isdiagond, the disturbances can be written in scalar form as follows:
g
ein = a firr‘nSerm +nin '
m=1

where both the f,,’sand s ,’s (the diagond eements of T ) are unknown parameters.
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Random Parameters
The MNL formulation with normally distributed random taste parameters can be written as:

Uu,=X,b,+n, ,
where b, ~N(b,S,).
Replacing b, with the equivalent relationship: b, =b +Tz,, where T isthelower triangular Cholesky
matrix such that TT'=S, , leadsto ageneral factor analytic logit kernel specification where F, = X :
U,=Xb+XTz, +n, .
The unknown parameters are the vector b and those present in T . Note that T is often diagonal, but

does not have to be. Also, the distribution does not have to be normal. For example, it is often specified as
lognormal for parameters that have sign congtraints.

Autoregressive Process

The disturbances X, = (X,,,..-,X;,)" of afirst-order generalized autoregressive process [GAR(1)] is
defined as follows:

Xn:rphxn-l-TZn 1

where: A, isa(J” J) matrix of weights & , describing the influence of each X, error

upon the others. A, can either be fixed or afunction of unknown parameters;
r  isan unknown parameter; and

Tz dlowsfor heteroscedastic disturbances,
Tis(J" J) diagondand z, is(J" 1.

Solving for X, and incorporating it into the logit kernel genera form, leads to alogit kernel GAR[1]
specification:

U,=X,b+FTz +n,,

where F =(1-1 A)™".

Estimation

Aswith probit, the flexibility in specifying the error terms comes at a cost, namely the probability functions
consist of multi-dimensiond integrals that do not have closed form solutions. Standard practiceis to
estimate such models by replacing the choice probabilities with easy to compute and unbiased simulators.
A key aspect of the logit kernel model isthat if the factors z, are known, the model correspondsto a
multinomid logit formulation:
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en( Xinb +FinTZ n)

é, en(xinb+FinTzn) '

LG IX,2,)=
jiic

where L (i | X,,,z,;d) isthe probability that the choiceis i given X, and z,,. The unknown parameters
include m b, andthosein F and T .

Sincethe z, isin fact not known, the unconditional choice probability of interest is:

PG| X,) :QL(i | Xn,2)n(z,ly)dz [D-4]

where n(z ,1,,) isthejoint density function of z , which, by construction, is composed of i.i.d. standard
norma components. The advantage of the logit kernel model is that we can naturaly estimate
P(i | X,;d) with an unbiased, smooth, tractable smulator, which we compute as:

D
B IX) == 8 L[ Xnz) |
D 4=
where z ¢ denotes draw d from the digtribution of z ., thus enabling us to estimate high dimensional
integrals with relative ease. The logit kerndl probability smulator has dl of the desirable properties of a
smulator including being convenient, unbiased, and smooth, and can straightforwardly be applied in
maximum smulated likelihood estimation.

Identification

It isnot surprising that the estimation of such models brings identification and normalization issues. There
are two sets of relevant parameters that need to be considered: the vector b and the unrestricted
parameters in the disturbance term, which include F,, T , and m. For the vector b , identification is
identical to that for amultinomial logit model. Such issues are well understood, and the reader is referred
to BenAkiva and Lerman (1985) for details.

The identification of the parameters in the disturbances is much more complex. Identification and
normaization, including the order, rank, and positive definiteness conditions were covered in detail in
Chapter 2. The summary is that one has to be careful with identification of the logit kernel model. In
particular:

Identification is not necessarily intuitive. For example, only one disturbance parameter isidentified
with atwo nest structure, whereas three disturbance parameters are identified with a three nest
structure.

Identification is not necessarily analogous to the systematic portion. For example, if random
parameters are estimated for a categorical variable with 3 categories, only two systematic parameters
are identified, whereas three disturbance parameters are identified.
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Normalization is not necessarily like probit. For example, the normalization for a probit
heteroscedastic model is arbitrary, whereas the normalization for alogit kernel heteroscedastic model
is not (the minimum variance dternative must be normalized).

Using a smdl number of draws in smulation will mask identification problems, which makes analytica
verification of identification even more critical.

Combining Stated and Revealed Preferences

Specification
The framework for combining stated and revealed preferencesis shown in Figure 4-3. The choice models
for the RP and SP models can be written individually as follows:

Reveded: U = XFp +ef,
saed UP=XTb +e?,

where X and X ¥ are the explanatory variables for the RP and SP experiments, respectively, and

b are the unknown parameters where at least a subset of the parameters are common across the two
models. In order to combine the models, there are two important issues involving the disturbances e~ and
e that need to be considered. Firgt, they are most likely correlated across multiple responses for a given
individua. Second, the scale (i.e., their variances) may vary across the two models.

Issue 1: Correlation Across Responses from the Same Individual

It ishighly likely that multiple responses from a given individua will exhibit correlated disturbance terms. In
the best possible scenario, ignoring potential correlation will result in consistent, but inefficient estimates.
However, in the worst casg, it can lead to inconsistent estimates. This occurs, for example, when the
revealed choice (Y™ ) isincluded in the SP mode (often done to capture response bias); if € and e~°
are correlated then Y7 is endogenous to the SP model, and therefore the resulting estimates are
inconsistent.

To deal with the issue of correlation, the model should be specified in away that alows for correlation
among the SP responses as well as correlation between the SP and RP responses from a given individual.
To achieve this, Morikawa et a. (1996) suggest decompasing the error component into two porti ons™;

e® =Y ™ +n®

eFX=Y%h +n¥

® Again, we're assuming that the MNL specification is appropriate for both the SP and RP model, athough clearly any choice
model can be substituted.
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where: h. isa(J" 1) vector of i.i.d. standard normal disturbances. These are assumed

independent across aternatives, but identical across responses for agiven
individud (also caled an ‘agent effect’).

YR YT are (37 J) diagona matrices, which contain unknown parameters that capture
the correlation across responses.

n®, n¥ are(J" 1) vectorsof disturbances (white noise), and each vector isi.i.d.
Gumbd.
h,, n’, n¥ areindependent.

Thus, this structure alows for correlations between RP and SP responses for the same individud:
Cov(U;".U) =y ™y~
where y,; denotesthe i" diagona element of the matrix Y .
If there are multiple SP responses per individual, for example, SP, and SP,, then:
Cov(UT=, U )=(y ¥)>.
Given this structure, the likelihood for, say, 1 RP response (Y~ ) and Q SP responses
(Vs ={ Y3 s Yip}) Observed for the respondent n is
P(Yn Yo I Xa)= (v | XnRP,h)(Q?1 L (Yng | Xng D) f(h)dh [D-5]
h q=

where the unknown parametersinclude b, m and Y , and it is necessary to integrate out over
the unknown correlation factor h .

In caculating the probabilities within the integral, the scale issue becomes important, which is described
next.
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Issue 2: Different Scales for Different Datasets

Since the effect of unobserved factors will be different between revealed and stated preference surveys,
there is good reason to suspect that n ¥ and N> have different variances, which leads to different scales
My and My, . The conditional probabilities are then:

em?P (xiﬁpb Y iRFhln)

: RP RP —
LA™ [X,"h,) = 8 oo o T [D-6]
fic
ema:(XiﬁZ’b v Thip)
L% | X .h,)=— [D-7]

errsp(x,ﬁb v Th

ilc

Estimation

The likelihood for the sample can then be built from Equations [D-5], [D-6], and [D-7]. Joint estimators
are obtained by maximizing the log-likelihood of the sample over the unknown parameters (b ,m.Y ).

Thismodel requires numerical integration with respect to h to evaluate the likelihood, and therefore
requires customization of the likelihood in a flexible programming package. However, if seria correlation is
not considered, the model smplifies considerably as the integration over the agent effect (h) is no longer
necessary, or:

o)
Py Y 1X0)=L (¥ I X7 )O L(Vag | X3)
q=1

where the unknown parametersare b and m .

In this case the log-likelihood can be decomposed into the standard log-likelihood for the RP data plus the
log-likelihood for the SP data. The independent model can be estimated either sequentialy or
simultaneoudly. (See Morikawa, 1989, for a discussion.) Bradley and Daly (1997) developed a method for
estimating this model (no agent effect) smultaneoudly by creating an artificial tree structure and using a
standard Nested L ogit software package.

Identification

The standard identification rules for discrete choice apply to the specifications of both the RP and SP
portions (see Ben-Akiva and Lerman, 1985). The only unique issues here are with the agent effect
parameters, Y , and the scaleterms, m. The required normaizationsfor Y are determined by arank
condition (see Appendix C), and the resulting identification restrictions depend on the specification, for
example™:

* The mirror image of Cases | and 11 aso hold in which there are multiple RP responses and a single SP response.
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Number of Number of Number of Number of

RP Responses SP Responses Alternatives Identification Restrictions
Casel: 1 1 or more 3 or more none
Case ll: 1 2 or more 2 one (either RP or SP)
Caselll: 1 1 2 onefor RP & onefor SP

For the scale normdlization, recall that in order to identify the coefficients of a discrete choice model, the
scale must be set by arbitrarily fixing the variance of the disturbance term, i.e., by fixing m. For the joint
SP/RP modd, it is only necessary to fix one of the two scale terms. Therefore, we arbitrarily set the scale
of the model to be that of the RP data (i.e,, My, =1) and we estimate one parameter m, which equals the
ratio of standard deviationsbetween n¥ and n", or m= my,/m,, . The conditional probabilities are
then:

e(xiﬁpb-"yiRPhin)
CRP |y RP _
L™ X h) =
é e(Xan Y; hJ")
iic
. o em(xi%;b + 5hin)
F 1 o ) = 3 g T

iic

Choice and Latent Variables

Specification

The framework for the integrated choice and latent variable mode is shown in Figure 4-5. The integrated
model is composed of two parts. a discrete choice model and a latent variable model. Each part consists of
one or more structural equations and one or more measurement equations. Specification of these equations
and the likelihood function follow. ™

Structural Equations
For the latent variable model, we need the distribution of the latent variables, denoted as X, , given the
observed variables, for example:

X, =X, +w, ad w,~N(OS,) . [D-§]

Thisresults in one equation for each latent variable. Equation [D-8] can aso be generalized to include
latent variables as explanatory variables.

The structural equation for the choice mode is as before, except now contains latent explanatory
variables:

¥ Here, as elsewhere in the chapter, we make simplifying assumptionsto clarify the explanation, for example, we assume linear in
the parameters and normally distributed disturbances (except for the Gumbel term for the choice model).
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U,=X,b,+X b, +e, . [D-9]

Measurement Equations

For the latent variable model, we need the distribution of the indicators (1) conditiona on the values of the
latent variables, for example:

| =Xa+u, ad u,~N(0S,). [D-10]

This results in one equation for each indicator (for example, each survey question). These measurement
equations usualy contain only the latent variables on the right-hand-side. However, they may also contain
individual characteristics or any other variable determined within the mode system such as the choice
indicator. In principle, such parameterizations can be allowed to capture systematic response biases when
the individud is providing indicators.

The measurement equation for the choice model is exactly as before:

_FL ity :m?x{an}

Yin [D-11]

=1
10, otherwise

Integrated Choice and Latent Variable Model
The integrated modd consists of Equations [D-8] through [D-11]. Equations [D-8] and [D-10] comprise
the latent variable model, and equations [D-9] and [D-11] comprise the choice modd.

Estimation

Likelihood Function

The most intuitive way to cregate the likelihood function for the integrated mode is to start with the
likelihood of a choice modd without latent variables:

P(y, | X,) -

The choice modd can be any number of forms, for example, logit, nested logit, random parameter logit,
probit, ordina probit, and can include the combination of different choice indicators such as stated and
revealed preferences.

Now we add the latent variables to the choice model. Once we hypothesize an unknown latent construct,
X", its associated distribution, and independent error componerts (W, €), the likelihood function is then
the integral of the choice model over the distribution of the latent constructs:

P(yn |Xn) = op(yn |xn’xn*)fl(xn* |Xn)dX* ’
X"
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where the unknown parameters include the b from the choice model (aswell as any estimated
disturbance terms), and the | and parametersin S, from the latent variable structural model.

We introduce indicators to improve the accuracy of estimates of the structural parameters. Assuming the
error components (w , e ,u ) areindependent, the joint probability of the observable variables y. and |,
conditional on the exogenous variables X, , is

f4(yn ' In | Xn) = [D-12]

c‘)P(yn | xn’ Xn*) fa(l n | Xn*)fl(xn*l Xn) dX* ’
%"

which now includes the unknown parameters from the measurement model: a and thosein S, .

Note that the first term of the integrand corresponds to the choice model, the second term corresponds to
the measurement equation from the latent variable model, and the third term corresponds to the structural
equation from the latent variable model. The latent variable is only known to its distribution, and so the joint
probability of y, | ,and X" isintegrated over the vector of latent constructs X' .

Identification

Aswith dl latent variable models, identification is certainly an issue in these integrated choice and latent
variable models. While identification has been thoroughly examined for special cases of the integrated
framework presented here (see, for example, Elrod 1988 and Keane 1997), necessary and sufficient
conditions for the general integrated model have not been developed. Therefore, identification of the
integrated models needs to be analyzed on a case-by-case basis.

In generdl, al of the identification rules that apply to atraditiona latent variable model are applicable to the
latent variable mode portion of the integrated model. See Bollen (1989) for a detailed discussion of these
rules. Similarly, the normalizations and restrictions that apply to a standard choice model would aso apply
here. See Ben-Akiva and Lerman (1985) for further information.

For the integrated model, a sufficient, but not necessary, condition for identification can be obtained by
extending the Two-step Rule used for latent variable models to a Three-step Rule for the integrated model:

1. Confirm that the measurement equations for the latent variable model are identified (using, for
example, standard identification rules for factor analysis models).

2. Confirm that, given the latent variables, the structural equations of the latent variable modd are
identified (using, for example, standard rules for a system of simultaneous equations).

3. Confirm that, given the distribution of the latent variables, the choice modd isidentified (using, for
example, standard rules for a discrete choice model).

Because identification is not always straightforward, empirical tests of identification can be extremely
useful for these models, which are discussed later.

187



Choice and Latent Classes

Specification
The framework for the latent class modd is shown in Figure 4-6. The model iswritten as:

P [ X,) :és. P( | X,,s)P(g X,) [D-13]

s=1

P(@i | X,,;9) isthe class-specific choice model, and can include variation across classes in terms of all
aspects of the choice process, for example taste parameters, choice sets, decision protocol, or covariance
structure (for example, nesting). P(s| X)) isthe class membership moddl, i.e., the probability of
belonging to class s given X, .

The primary issue in latent class models is how to specify the class membership modd. Gopinath (1995)
provides extensive detail on thisissue, and a summary is provided here. Many applications of latent class
choice models in the literature employ a naive class membership model in which P(s| X,;;q) isalogit
mode and the class-specific constants are the only parameters (see, for example, Kamakura and Russall,
1987). Such models are more commonly called ‘finite mixture models (see McLachlan and Basford, 1988,
for areview).

The most straightforward extension of the naive modd is to include descriptive information about the
decison-makers as explanatory varigblesin P(s| X,;q) to improve the prediction of the class
probabilities. If P(s| X,;q) isan MNL (or analogous) model, then thisis called a‘categorical criterion
model’ (see, for example, Dillon et a., 1993, or Gupta and Ghintagunta, 1994). If it isordinal MNL (i.e,
the classes represent varying degrees along a single dimension) than it is called an ‘ordina criteria model’.
Gopinath (1995) developed aflexible and rigorous methodology for specifying latent class membership
models. His methodology includes those methods described above as well as models in which the class
membership specification has ordinal criteriain more than one dimension. For example, if the latent classes
represent taste variations, the class membership could be based on an individual’ s sensitivity to two or
more attributes (for example, time and cost).

As with the continuous latent variables, it is helpful if indicators of the latent classes are available. Thisis
similar to the continuous latent variable case in which another component (the measurement equations for
the indicators) is added to the likelihood. See Ben-Akiva and Boccara (1995) and Gopinath (1995) for
more information.

Estimation

Like the other models described in this chapter, estimation can be performed using maximum likelihood
techniques. However, one key difference is that as long as the conditiona choice model does not require
integration, then the latent class model does not require integration.
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One important issue with latent class models is that there can be numerous local maxima. Therefore, it is
necessary to explore different starting values. In our empirical tests, we have found that it works well to
start the model at a point with very distinct class-specific behavior, and alow the classes to move together.

Identification

Identification of latent class models follows the general rules for latent variable models. A sufficient but
not necessary two-step rule can be used in which the first step is to verify that the class membership
mode is identified, and the second step is to verify that the conditional choice mode is identified given the
class.
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Appendix E:

Stability of Parameter Estimates

The results presented in this appendix are used to test the stability of the models presented in Chapter 4.
With the exception of the random parameter models, the final parameter estimates are within one standard
deviation of amodel estimated with fewer draws, and therefore are very stable. The random parameter
models tend to be more unstable, particularly with lognorma (as opposed to norma) distributions.
Nonetheless, with a couple of exceptions, all parameter estimates are within 2 standard deviations, and
therefore fairly stable. The parameters that are outside of 2 standard deviations (2 in Table E-4 and 3in
Table E-8, shown in bold) arein dl caseslognorma distribution parameters that have extremely small
standard deviations.
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Table E-3: Stability of Joint SP/RP Model (Table 4-2)

Draws: 500 1000
Parameter Est. Est. Std Er.
Rail constant RP 0.439 0.444 0.493
Rail constant SP2 -0.480 -0.466 0.777
Work trip dummy 117 1.17 0.51
Fixed arrival time dummy 0.724 0.723 0.381
Female dummy 0.989 0.990 0.381

Cost per person in Guilders | -0.0607 | -0.0608 0.0132

Out-of-vehicle time in hours -2.22 -2.23 0.83
In-vehicle time in hours -0.709 -0.710 0.158
Number of transfers -0.100 -0.100 0.036
Amenities -0.361 -0.361 0.080
Inertia dummy (RP Choice) 2.98 2.97 1.02
Agent effect RP 0.680 0.686 0.490
Agent effect SP2 244 2.44 0.50
Scale (mu) SP1 231 231 0.50
Scale (mu) SP2 1.31 1.31 0.30
Taul SP1 (=-Tau4 SP1) -0.195 -0.195

Tau2 SP1(=-Tau3SP1) | -0.0126 | -0.0127

Tau3 SP1 00126 | 00127  0.0036
Taud SP1 0.195 0.195 0.049
Taul SP2 -0.987 | -0.986 0.219
Tau2 SP2 (=-Tau3 SP2) -0.180 | -0.180
Tau3 SP2 0.180 0.180 0.053
Taud SP2 1.32 1.32 0.32
Log-likelihood: -4517.50 | -4517.43
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Table E-4: Stability of Random Parameter Model (Table 4-3)

Distributed Model 1: Independent Distributions

Distributed Model 2: Multivariate Distributions

Draws: 1000 5000 10000 20000 1000 5000 10000 20000
Parameter Est. Est. Est. Est. Std. Er. Est. Est. Est. Est. Std. Er.
Rail constant RP 1.94 1.84 2.78 2.80 0.97 1.96 2.94 2.04 1.67 0.81
Rail constant SP2 253 2.63 3.82 4.05 1.20 2.65 3.73 2.59 2.19 0.79
Work trip dummy 0.820 0.902 0.814 0.891 0.762 1.179 1.181 1.234 1.16 0.65
Fixed arrival time dummy 0.569 0.620 0.559 0.513 0.647 0.526 0.702 0.710 0.850 0.522
Female dummy 1.48 1.49 1.56 1.61 0.61 155 1.50 1.55 1.51 0.51
Cost per person in Guilders -2.24 -2.38 -2.21 -2.19 0.26 -2.24 -2.14 -2.14 -2.33 0.26
Out-of-vehicle time in hours 1.14 1.10 1.60 1.56 0.34 1.33 1.41 1.19 0.97 0.36
In-vehicle time in hours 0.224 0.0852 0.295 0.284 0.279 0.142 0.226 0.247 0.149 0.271
Number of transfers -2.09 -2.37 -2.05 -2.29 0.33 -2.32 -2.14 -1.93 -2.25 0.31
Amenities -0.567 -0.765 -0.600 -0.644 0.265 -0.642 -0.656 -0.650 -0.722 0.274
Ti1 0.903 1.00 0.917 0.993 0.129 1.283 1.201 1.194 1.29 0.06
T21 -0.293 -0.434 -0.414 -0.479 0.043
T31 0.422 0.512 0.478 0.470 0.045
T41 0.711 0.408 0.437 0.645 0.055
T51 0.352 0.329 0.356 0.404 0.043
T22 0.827 0.873 0.700 0.723 0.166 0.497 0.559 0.550 0.658 0.060
T32 -0.073 0.160 0.355 0.281 0.063
T42 0.533 0.262 0.308 0.287 0.021
T52 0.229 0.163 0.127 0.035 0.048
T33 0.779 0.871 0.885 0.818 0.057 0.867 0.856 0.890 0.894 0.042
T43 -0.210 -0.283 -0.190 0.106 0.036
T53 0.223 0.150 0.125 0.136 0.033
T44 1.78 1.84 1.77 1.96 0.21 1.93 1.97 1.77 1.83 0.11
T54 0.221 0.350 0.351 0.344 0.024
T55 0.94 1.09 1.07 1.06 0.05 0.95 1.04 1.01 1.11 0.07
Inertia dummy (RP Choice) 0.675 0.667 0.300 -0.245 0.680 0.387 0.990 1.068 1.097 0.481
Agent effect RP 2.55 221 2.47 3.19 1.28 2.58 2.10 2.02 2.07 0.65
Agent effect SP2 4.08 3.26 3.59 4.14 1.14 3.97 351 3.47 3.74 1.05
Scale (mu) SP1 4.07 4.82 3.99 4.07 1.11 5.02 4.75 4.88 5.21 1.44
Scale (mu) SP2 1.54 2.08 1.86 1.79 0.48 1.92 1.91 1.91 1.88 0.54
Taul SP1 (=-Tau4 SP1) -0.231 -0.202 -0.244 -0.241 -0.194 -0.213 -0.209 -0.196 -
Tau2 SP1 (=-Tau3 SP1) -0.0153 -0.0134 -0.0161 -0.0159 -0.0127 -0.0140 -0.0137 -0.0128 -
Tau3 SP1 0.0153 0.0134 0.0161 0.0159 0.0052 0.0127 0.0140 0.0137 0.0128 0.0043
Tau4 SP1 0.231 0.202 0.244 0.241 0.081 0.194 0.213 0.209 0.196 0.071
Taul SP2 -1.004 -0.777 -0.865 -0.904 0.241 -0.841 -0.856 -0.859 -0.856 0.241
Tau2 SP2 (=-Tau3 SP2) -0.178 -0.137 -0.153 -0.160 -0.147 -0.151 -0.151 -0.150 -
Tau3 SP2 0.178 0.137 0.153 0.160 0.055 0.147 0.151 0.151 0.150 0.053
Tau4 SP2 1.291 0.988 111 1.15 0.31 1.03 1.09 1.08 1.08 0.31
Log-likelihood: -3934.21 -3933.36 -3932.50 -3931.20 -3916.15 -3909.88 -3908.71| -3911.72
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Table E-5: Stability of Choice and Latent Variable Model (Table 4-5)

CHOICE MODEL

Draws: 1000 5000
Parameter Est. Est. Std. Er.
Rail constant RP -0.525 -0.442 0.750
Rail constant SP2 -1.193 -0.890 0.837
Work trip dummy 1.70 1.67 0.64
Fixed arrival time dummy 0.748 0.692 0.532
Female dummy 1.15 1.13 0.45
Cost per person in Guilders -0.0593 | -0.0605 0.0163
Out-of-vehicle time in hours -0.946 -0.983 0.936
In-vehicle time in hours -0.679 -0.691 0.186
Number of transfers -0.097 -0.0982 0.0384
Amenities -0.351 -0.358 0.097
Latent Comfort - RP 1.10 1.16 117
Latent Comfort - SP2 1.14 1.16 0.55
Latent Convenience - RP 1.38 1.30 0.76
Latent Convenience - SP2 0.746 0.764 0.331
Inertia dummy (RP Choice) 3.04 2.52 124
Agent effect RP -0.087 0.210 0.611
Agent effect SP2 2.02 2.08 0.64
Scale (mu) SP1 2.37 2.32 0.63
Scale (mu) SP2 1.27 1.31 0.42
Taul SP1 (=-Tau4 SP1) -0.190 -0.194
Tau2 SP1 (=-Tau3 SP1) -0.0124 | -0.0126
Tau3 SP1 0.0124 0.0126 0.0041
Tau4 SP1 0.190 0.194 0.058
Taul SP2 -1.014 -0.988 0.313
Tau2 SP2 (=-Tau3 SP2) -0.185 -0.181
Tau3 SP2 0.185 0.181 0.065
Tau4 SP2 1.36 1.33 0.44
Log-likelihood (Choice&Latent): -6656.87 |-6656.12
Log-likelihood (Choice): -4518.72 |-4517.97
LATENT VARIABLE MODEL
Structural Equations (2 equations, 1 per column)
Comfort Equation Convenience Equation
Draws: 1000 5000 1000 5000
Parameter Est Est Std. Er Est Est Std. Er
Constant - Comfort 0.087 0.106 0.219
Constant - Convenience 0.529 0.489 0.303
Age dummy - over 40 -0.444 -0.449 0.622 0.885 0.871 0.287
First class rail rider 0.441 0.431 0.567
In-vehicle time in hours -0.505 -0.481 0.331
Out-of-vehicle time in hours -1.22 -1.18 0.71
Number of transfers -0.151 -0.122 0.199
Eree parking dummy (auto) 0.242 0.222 0.242
Variance(") 1.00 1.00 o 1.00 1.00
Measurement Equations (6 equations, 1 per row)
|  Comfort Parameters | Convenience Parameters Disturbance Params. (StdDev(4)
Draws: 1000 5000 1000 5000 1000 5000
Equation Est Est Std. Er Est Est. Std. Er Est. Est Sitd. Er
Relaxation 0.540 0.522 0.240 0.126 0.131 0.135 1.16 1.17 0.13
Reliability 0.329 0.331 0.105 0.443 0.446 0.089 0.903 0.899 0.055
Flexibility 0.714 0.731 0.288 0.894 0.877 0.242
Ease 0.570 0.571 0.168 1.15 1.15 0.09
Safety 0.394 0.381 0.135 0.134 0.132 0.117 0.796 0.803 0.081
Overall Rating 1.21 1.25 0.82 1.42 1.39 0.51 1.29 1.28 0.26
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Table E-6: Stability of Latent Class Model (Table 4-6)

MODE CHOICE MODEL

Parameters Common

Parameters Unique

Parameters Unique

Across Classes to Class 1 to Class 2
Draws: 500 1000 500 1000 500 1000

Parameter Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er.
Rail constant RP 1.28 1.26 0.756
Rail constant SP2 1.45 1.42 0.772
Work trip dummy 111 1.10 0.620
Fixed arrival time dummy 0.637 0.641 0.497
Female dummy 1.03 1.03 0.432
Cost per person in Guilders -0.227 -0.231 0.063 -0.0405 -0.0408 0.0115
Out-of-vehicle time in hours -1.38 -1.31 1.21 -3.51 -3.47 1.34
In-vehicle time in hours -1.66 -1.69 0.48 -0.871 -0.876 0.244
Number of transfers -0.211 -0.216 0.092 -0.149 -0.149 0.055
Amenities -0.402 -0.408 0.114 -0.537 -0.540 0.146
Inertia dummy (RP Choice) 0.97 0.99 0.696
Agent effect RP 212 2.09 0.76
Agent effect SP2 291 2.87 0.73
Scale (mu) SP1 2.27 2.25 0.59
Scale (mu) SP2 1.56 1.56 0.35
Taul SP1 (=-Tau4 SP1) -0.235 -0.236 -
Tau2 SP1 (=-Tau3 SP1) -0.0153 | -0.0154
Tau3 SP1 0.0153 0.0154 0.0050
Tau4 SP1 0.235 0.236 0.070
Taul SP2 -0.895 -0.895 0.210
Tau2 SP1 (=-Tau3 SP2) -0.161 -0.161
Tau3 SP2 0.161 0.161 0.051
Tau4d SP2 1.17 1.17 0.28
Log-likelihood: -4283.14 | -4283.04
CLASS MEMBERSHIP MODEL

Draws: 500 1000

Parameter Est. Est. Std. Er.
Constant -0.450 -0.455 0.395
Female dummy -0.0776 | -0.0832 0.3625
Number of persons in party 0.175 0.174 0.121
Work trip dummy -1.93 -1.94 0.73
Age over 40 dummy -0.476 -0.472 0.371
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Table E-7: Stability of Choice and Latent Variable with Latent Classes Model (Table 4-7)

MODE CHOICE MODEL

Parameters Common Across Parameters Unique Parameters Unique
Classes to Class 1 to Class 2
Draws: 1000 5000 1000 5000 1000 5000
Parameter Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er.

Rail constant RP 0.119 0.293 0.905

Rail constant SP2 0.834 0.940 1.143

Work trip dummy 1.94 1.96 1.26

Fixed arrival time dummy 0.619 0.590 0.609

Female dummy 1.04 1.04 0.529

Cost per person in Guilders -0.232 -0.220 0.104 -0.0412 -0.0406 0.0196
Out-of-vehicle time in hours 0.251 0.0541 1.5606 -1.44 -2.27 1.64
In-vehicle time in hours -1.71 -1.61 0.76 -0.893 -0.909 0.375
Number of transfers -0.207 -0.180 0.127 -0.158 -0.167 0.079
Amenities -0.419 -0.415 0.166 -0.557 -0.566 0.241
Latent Comfort - RP 153 1.32 0.69

Latent Comfort - SP2 175 1.62 0.53

Latent Convenience - RP 2.08 1.90 1.04

Latent Convenience - SP2 1.42 1.32 0.61

Inertia dummy (RP Choice) 0.124 0.0277 1.0414

Agent effect RP 2.09 2.24 1.61

Agent effect SP2 2.45 273 1.13

Scale (mu) SP1 2.20 221 0.92

Scale (mu) SP2 1.48 1.38 0.43

Taul SP1 (=-Tau4 SP1) -0.242 -0.242 -

Tau2 SP1 (=-Tau3 SP1) -0.0158 -0.0157

Tau3 SP1 0.0158 0.0157 0.0070

Tau4 SP1 0.242 0.242 0.111

TaulSP2 -0.937 -1.00 0.32

Tau2 SP1 (=-Tau3 SP2) -0.169 -0.181 -

Tau3SP2 0.169 0.181 0.071

Tau4 SP2 1.23 131 0.43

Log-likelihood (Choice&Latent): -6419.63 -6423.09

Log-likelihood (Choice): -4282.48 -4284.96

LATENT VARIABLE MODEL

Structural Equations (2 equations, 1 per column)

Comfort Equation Convenience Equation
Draws: 1000 5000 1000 5000

Parameter Est. Est. Std. Er. Est. Est. Std. Er.
Constant - Comfort 0.149 0.132 0.158
Constant - Convenience 0.497 0.497 0.245
Age dummy - over 40 -0.565 -0.540 0.400 0.851 0.876 0.246
First class rail rider 0.366 0.454 0.402
In-vehicle time in hours -0.417 -0.519 0.324
Out-of-vehicle time in hours -1.09 -1.23 0.54
Number of transfers -0.139 -0.107 0.156
Free parking dummy (auto) 0.264 0.218 0.259
Variance 1.00 1.00 1.00 1.00

Measurement Equations (6 equations, 1 per row)

Comfort Parameters Convenience Parameters Disturbance Params. (StdDev(\))
Draws: 1000 5000 1000 5000 1000 5000
Equation Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er.
Relaxation 0.559 0.551 0.183 0.160 0.156 0.134 115 1.15 0.10
Reliability 0.340 0.343 0.106 0.468 0.462 0.090 0.888 0.887 0.055
Flexibility 0.736 0.716 0.171 0.875 0.892 0.139
Ease 0.578 0.570 0.128 114 1.15 0.09
Safety 0.398 0.377 0.092 0.153 0.153 0.103 0.789 0.800 0.051
Overall Rating 1.09 1.10 0.38 1.43 1.44 0.26 1.40 1.37 0.18
CLASS MEMBERSHIP MODEL
Draws: 1000 5000
Parameter Est. Est. Std. Er.
Constant -0.442 -0.375 0.467
Female dummy -0.00192 0.0489 0.4128
Number of persons in party 0.169 0.165 0.125
Work trip dummy -1.93 -1.85 0.74
Age over 40 dummy -0.472 -0.496 0.384
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Table E-8: Stability of Choice & Latent Variable Model with Random Parameters (Table 4-8)

CHOICE MODEL

Choice and Latent Variable RP/SP Model
with Randomly Distributed Parameters (latent
variable portion below)
Location Parameters Distribution Parameters
Draws: 10000 20000 10000 20000
Parameter Est. Est. Std. Er. Est. Est. Std. Er.
Rail constant RP 0.596 0.100 0.796
Rail constant SP2 2.23 1.53 0.67
Work trip dummy 1.28 1.07 0.83
Fixed arrival time dummy 0.195 0.397 0.651
Female dummy 1.55 1.48 0.63
Cost per person in Guilders -2.09 -2.18 0.29 1.18 1.02 0.05 lognormal
Out-of-vehicle time in hours -0.699 0.0579 0.9423
In-vehicle time in hours 0.462 0.228 0.305 0.938 0.864 0.040 lognormal
Number of transfers -1.92 -2.14 0.38 1.60 1.76 0.15 lognormal
Amenities -0.460 -0.609 0.271 1.24 1.13 0.05 lognormal
Latent Comfort - RP 3.29 2.98 0.84
Latent Comfort - SP2 3.35 3.08 0.87
Latent Convenience - RP 2.17 1.54 0.37
Latent Convenience - SP2 1.64 1.18 0.37
Inertia dummy (RP Choice) -1.32 -1.05 0.57
Agent effect RP 1.00 1.00 -
Agent effect SP2 1.64 1.84 0.53
Scale (mu) SP1 3.79 4.28 1.24
Scale (mu) SP2 212 2.03 0.55
Taul SP1 (=-Tau4 SP1) -0.258 -0.229
Tau2 SP1 (=-Tau3 SP1) -0.0170 | -0.0152
Tau3 SP1 0.0170 0.0152 0.0053
Tau4 SP1 0.258 0.229 0.083
Taul SP2 -0.805 -0.812 0.220
Tau2 SP1 (=-Tau3 SP2) -0.142 -0.143 -
Tau3 SP2 0.142 0.143 0.049
Tau4 SP2 1.01 1.03 0.28
Log-likelihood (Choice&Latent): -6074.22 | -6066.08
Log-likelihood (Choice): -3937.94 | -3935.04

LATENT VARIABLE MODEL

Structural Equations (2 equations, 1 per column)

Comfort Equation Convenience Equation
Location Parameters Distribution Parameters Location Parameters Distribution Parameters
Draws: 10000 20000 10000 20000 10000 20000 10000 20000

Parameter Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er.
Constant - Comfort 0.0916 0.0688 0.1362
Constant - Convenience 0.467 0.649 0.239
Age dummy - over 40 -0.485 -0.435 0.145 0.963 0.961 0.286 -0.101 -0.281 0.072 normal
First class rail rider -0.358 -0.434 0.211
In-vehicle time in hours -2.87 -3.03 0.43 1.75 1.96 0.15 lognormal
Out-of-vehicle time in hours 0.379 0.246 0.386 -0.536 -0.674 0.133  lognormal
Number of transfers -0.162 -0.294 0.126
Free parking dummy (auto) -0.188 0.147 0.180
Variance(W) 1.00 1.00 o 1.00 1.00
Measurement Equations (6 equations, 1 per row)

Comfort Parameters Convenience Parameters Disturbance Params. (StdDev(u))
Draws: 10000 20000 10000 20000 10000 20000

Equation Est. Est. Std. Er, Est. Est. Std. Er, Est, Est, Std. Er,
Relaxation 0.384 0.408 0.138 0.201 0.136 0.084 1.20 1.20 0.07
Reliability 0.217 0.220 0.100 0.424 0.402 0.072 0.903 0.896 0.052
Flexibility 0.597 0.603 0.109 0.909 0.870 0.087
Ease 0.468 0.453 0.085 1.16 1.16 0.07
Safety 0.211 0.242 0.095 0.182 0.152 0.069 0.845 0.838 0.044
Overall Rating 0.949 1.05 0.13 124 112 0.12 1.45 1.39 0.14
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Table E-9: Stability of Choice and Latent Variable Modelswith

Heter ogeneity of Latent Variable Parameters (Table 4-9)

CHOICE MODEL (Latent Variable Portion not Shown)

Choice and Latent Variable RP/SP Model
with Randomly Distributed Parameters (Lognormal)

Choice and Latent Variable RP/SP Model
with Latent Class Heterogeneity

Draws: 2000 10000 2000 10000 5000 10000 5000 10000

Parameter Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er. Est. Est. Std. Er.
Rail constant RP -0.383 -0.390 0.707 -0.389 -0.391 0.722
Rail constant SP2 -0.923 -0.856 0.748 -0.797 -0.908 0.778
Work trip dummy 1.80 1.76 0.74 1.70 1.72 0.66
Fixed arrival time dummy 0.706 0.707 0.504 0.688 0.702 0.520
Female dummy 1.21 1.16 0.48 1.17 1.17 0.48
Cost per person in Guilders -0.0648 -0.0637 0.0165 -0.0637 -0.0635 0.0174
Out-of-vehicle time in hours -1.18 -1.09 0.88 -1.12 -1.14 0.99
In-vehicle time in hours -0.742 -0.728 0.192 -0.727 -0.726 0.198
Number of transfers -0.105 -0.103 0.040 -0.103 -0.103 0.041
Amenities -0.384 -0.377 0.100 -0.377 -0.376 0.104

Location Parameters Distribution Parameters Class 1 Parameters Class 2 Parameters
Latent Comfort - RP 0.267 0.161 0.699 0.320 0.187 0.787 1.37 1.34 0.94 0.000 0.000
Latent Comfort - SP2 0.280 0.186 0.391 0.291 0.340 0.079 1.42 1.42 0.63 0.000 0.000
Latent Convenience - RP 0.233 0.267 0.467 0.362 0.314 0.511 1.48 1.48 0.61 0.000 0.000
Latent Convenience - SP2 -0.430 -0.252 0.359 0.379 0.214 0.115 0.894 0.834 0.366 0.000 0.000
Inertia dummy (RP Choice) 2.69 2.56 1.07 2.38 2.62 121
Agent effect RP 0.225 0.256 0.566 0.245 0.125 0.571
Agent effect SP2 221 2.10 0.61 211 2.12 0.66
Scale (mu) SP1 2.16 2.20 0.58 2.20 2.21 0.61
Scale (mu) SP2 1.20 1.26 0.38 1.26 1.24 0.41
Taul SP1 (=-Tau4 SP1) -0.208 -0.204 - -0.204 -0.204 -
Tau2 SP1 (=-Tau3 SP1) -0.0135 -0.0133 - -0.0133 -0.0132 -
Tau3 SP1 0.0135 0.0133 0.0043 0.0133 0.0132 0.0044
Taud SP1 0.208 0.204 0.060 0.204 0.204 0.062
Taul SP2 -1.08 -1.03 0.31 -1.03 -1.05 0.34
Tau2 SP1 (=-Tau3 SP2) -0.198 -0.189 - -0.188 -0.192 -
Tau3 SP2 0.198 0.189 0.064 0.188 0.192 0.070
Taud SP2 1.45 1.39 0.43 1.38 1.41 0.49
Log-likelihood (Choice&Latent): | -6655.46 | -6655.79 -6656.10 | -6655.96
Log-likelihood (Choice): -4518.59 | -4518.08 -4518.06 | -4518.19
CLASS MEMBERSHIP MODEL
Draws: 5000 10000

Parameter Est. Est. Std. Er.

Constant 2.46 2.50 1.39
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