Discrete Panel Data

Michel Bierlaire

michel.bierlaire@epfl.ch

Transport and Mobility Laboratory

Discrete Panel Data – p. 1/??

Outline

- Introduction
- Static model
- Static model with panel effect
- Dynamic model
- Dynamic model with panel effect
- Application

Introduction

- Type of data used so far: *cross-sectional*.
- Cross-sectional: observation of individuals at the same point in time.
- Time series: sequence of observations.
- Panel data is a combination of comparable time series.

Introduction

- Panel Data: data collected over multiple time periods for the same sample of individuals.
- Multidimensional:

Individual	Day	Price of stock 1	Price of stock 2	Purchase
n	t	x_{1nt}	x_{2nt}	i_{int}
1	1	12.3	15.6	1
1	2	12.1	18.6	2
1	3	11.0	25.3	2
1	4	9.2	25.1	0
2	1	12.3	15.6	2
2	2	12.1	18.6	0
2	3	11.0	25.3	0
2	4	9.2	25.1	1
6.				– (

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

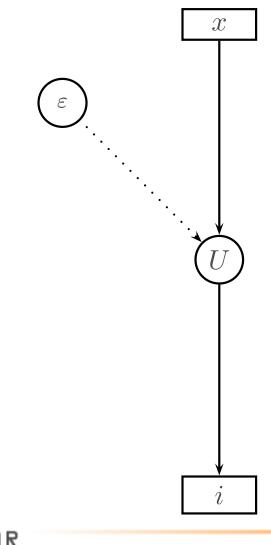
Introduction

Examples of discrete panel data:

- People are interviewed monthly and asked if they are working or unemployed.
- Firms are tracked yearly to determine if they have been acquired or merged.
- Consumers are interviewed yearly and asked if they have acquired a new cell phone.
- Individual's health records are reviewed annually to determine onset of new health problems.

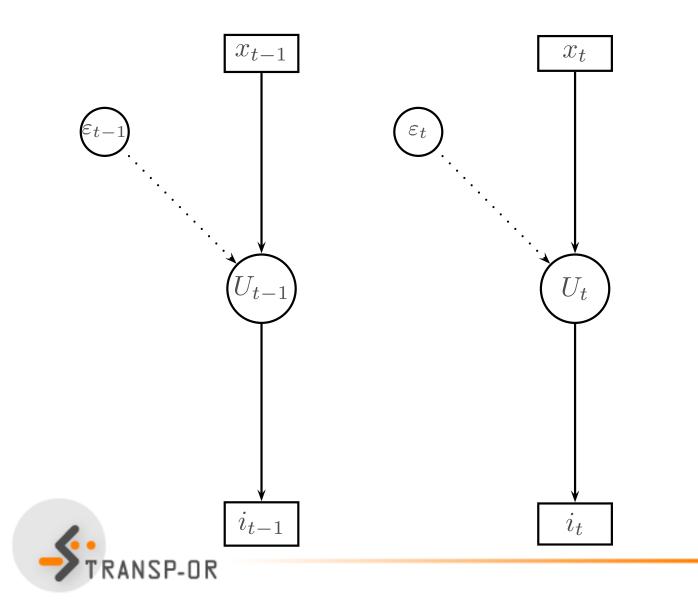
Discrete Panel Data – p. 5/??

Model: single time period



Discrete Panel Data – p. 6/??

Static model



Discrete Panel Data - p. 7/??

The model:

• Utility:

$$U_{int} = V_{int} + \varepsilon_{int}, \ i \in \mathcal{C}_{nt}.$$

$$P(i_{nt}) = \frac{e^{V_{int}}}{\sum_{j \in \mathcal{C}_{nt}} e^{V_{jnt}}}$$

• Estimation: contribution of individual n to the log likelihood:

$$P(i_{n1}, i_{n2}, \dots, i_{nT}) = P(i_{n1})P(i_{n2})\cdots P(i_{nT}) = \prod_{t=1}^{T} P(i_{nt})$$

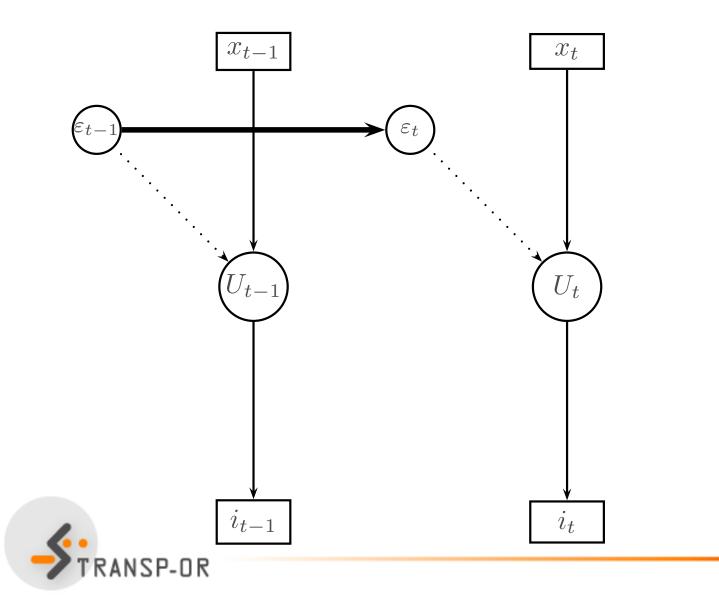
$$\ln P(i_{n1}, i_{n2}, \dots, i_{nT}) = \ln P(i_{n1}) + \ln P(i_{n2}) + \dots + \ln P(i_{nT}) = \sum_{t=1}^{T} \ln P(i_{nt})$$

$$\texttt{FORMULT}$$

Static model: comments

- Views observations collected through time as supplementary cross sectional observations.
- Standard software for cross section discrete choice modeling may be used directly.
- Simple, but there are two important limitations:
 - 1. Serial correlation:
 - unobserved factor persist over time,
 - in particular, all factors related to individual n,
 - $\varepsilon_{in(t-1)}$ cannot be assumed independent from ε_{int} .
 - 2. Dynamics:
 - Choice in one period may depend on choices made in the past.
 - e.g. learning effect, habits.

Dealing with serial correlation



Discrete Panel Data – p. 10/??

Panel effect

- Relax the assumption that ε_{int} are independent across t.
- Assumption about the source of the correlation:
 - individual related unobserved factors,
 - persistent over time.
- The model:

$$\varepsilon_{int} = \alpha_{in} + \varepsilon'_{int}$$

- It is also known as
 - agent effect,
 - unobserved heterogeneity.

Panel effect

- Assuming that ε'_{int} are independent across t,
- we can apply the static model.
- Two versions of the model:
 - with fixed effect: α_{in} are unknown parameters to be estimated,
 - with random effect: α_{in} are distributed.

Discrete Panel Data – p. 12/??

The model:

• Utility:

$$U_{int} = V_{int} + \alpha_{in} + \varepsilon'_{int}, \ i \in \mathcal{C}_{nt}.$$

• Logit:

$$P(i_{nt}) = \frac{e^{V_{int} + \alpha_{in}}}{\sum_{j \in \mathcal{C}_{nt}} e^{V_{jnt} + \alpha_{jn}}}$$

• Estimation: contribution of individual n to the log likelihood:

$$P(i_{n1}, i_{n2}, \dots, i_{nT}) = P(i_{n1})P(i_{n2})\cdots P(i_{nT}) = \prod_{t=1}^{T} P(i_{nt})$$

$$\ln P(i_{n1}, i_{n2}, \dots, i_{nT}) = \ln P(i_{n1}) + \ln P(i_{n2}) + \dots + \ln P(i_{nT}) = \sum_{t=1}^{T} \ln P(i_{nt})$$

$$\texttt{FRANSP-OR}$$

Comments:

- α_{in} capture permanent taste heterogeneity.
- For each n, one α_{in} must be normalized to 0.
- The α 's are estimated consistently only if $T \to \infty$.
- This has an effect on the other parameters that will be inconsistently estimated.
- In practice,
 - *T* is usually too short,
 - the number of α parameters is usually too high,

for the model to be consistently estimated and practical.

- Denote α_n the vector gathering all parameters α_{in} .
- Assumption: α_n is distributed with density $f(\alpha_n)$.
- For instance:

 $\alpha_n \sim N(0, \Sigma).$

- We have a *mixture* of static models.
- Given α_n , the model is static, as ε'_{int} are assumed independent across t.

The model:

• Utility:

$$U_{int} = V_{int} + \alpha_{in} + \varepsilon'_{int}, \ i \in \mathcal{C}_{nt}.$$

• Conditional choice probability:

$$P(i_{nt}|\alpha_n) = \frac{e^{V_{int} + \alpha_{in}}}{\sum_{j \in \mathcal{C}_{nt}} e^{V_{jnt} + \alpha_{jn}}}$$

Estimation:

• Contribution of individual n to the log likelihood, given α_n

$$P(i_{n1}, i_{n2}, \dots, i_{nT} | \alpha_n) = \prod_{t=1}^T P(i_{nt} | \alpha_n).$$

• Unconditional choice probability:

$$P(i_{n1}, i_{n2}, \dots, i_{nT}) = \int_{\alpha} \prod_{t=1}^{T} P(i_{nt}|\alpha) f(\alpha) d\alpha.$$

Estimation:

- Mixture model.
- Requires simulation for large choice sets.
- Generate draws $\alpha^1, \ldots, \alpha^R$ from $f(\alpha)$.
- Approximate

$$P(i_{n1}, i_{n2}, \dots, i_{nT}) = \int_{\alpha} \prod_{t=1}^{T} P(i_{nt}|\alpha) f(\alpha) d\alpha \approx \frac{1}{R} \sum_{r=1}^{R} \prod_{t=1}^{T} P(i_{nt}|\alpha^r)$$

• The product of probabilities can generate very small numbers.

$$\sum_{r=1}^{R} \prod_{t=1}^{T} P(i_{nt} | \alpha^r) = \sum_{r=1}^{R} \exp\left(\sum_{t=1}^{T} \ln P(i_{nt} | \alpha^r)\right).$$

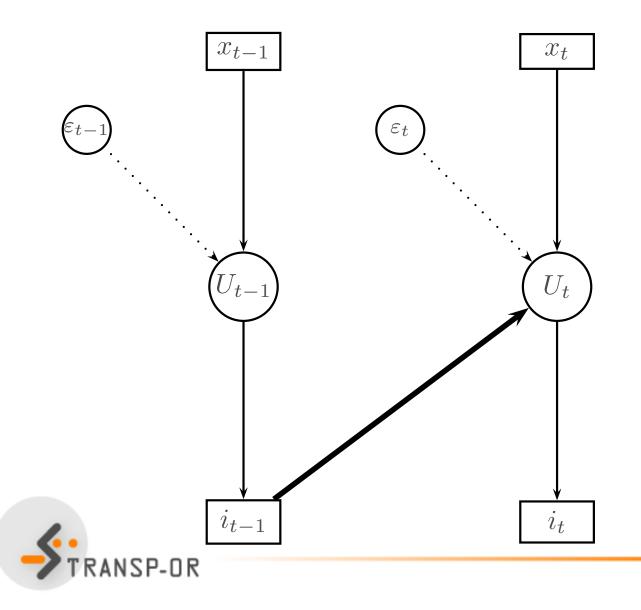
Comments:

- Parameters to be estimated: β 's and σ 's
- Maximum likelihood estimation leads to consistent and efficient estimators.
- Ignoring the correlation (i.e. assuming that α_n is not present) leads to consistent but not efficient estimators (not the true likelihood function).
- Accounting for serial correlation generates the true likelihood function and, therefore, the estimates are consistent and efficient.

Dynamics

- Choice in one period may depend on choices made in the past
- e.g. learning effect, habits.
- Simplifying assumption:
 - the utility of an alternative at time t
 - is influenced by the choice made at time t 1 only.
- It leads to a dynamic *Markov* model.

Dynamic Markov model



Discrete Panel Data – p. 21/??

Dynamic Markov model

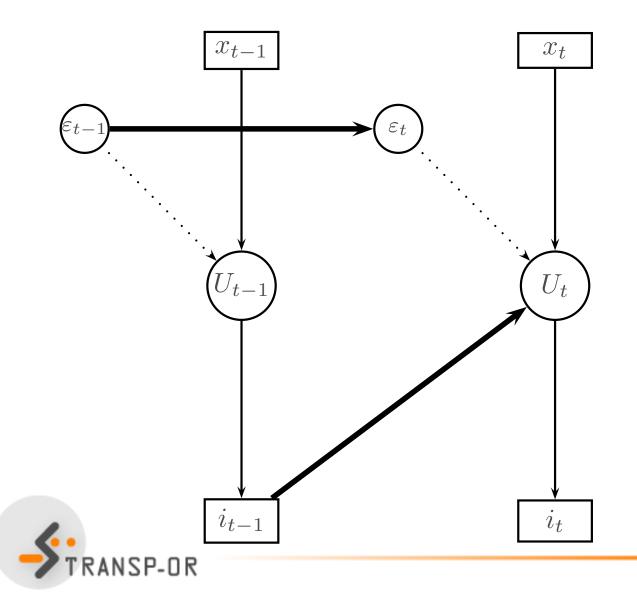
The model:

$$U_{int} = V_{int} + \gamma y_{in(t-1)} + \varepsilon_{int}, \ i \in \mathcal{C}_{nt}.$$

 $y_{in(t-1)} = \begin{cases} 1 & \text{if alternative } i \text{ was chosen by } n \text{ at time } t-1 \\ 0 & \text{otherwise.} \end{cases}$

- Captures serial dependence on past realized state
 - Example utility of bus today depends on whether consumer took bus yesterday (habit).
 - Fails if utility of bus today depends on permanent individual taste for bus (tastes) and whether consumer took bus yesterday. No serial correlation.
- Estimation: same as for the static model, except that observation t = 0 is lost.

Dynamic Markov model with serial correlation



Discrete Panel Data – p. 23/??

• Extension: combine Markov with panel effect.

 $U_{int} = V_{int} + \alpha_{in} + \gamma y_{in(t-1)} + \varepsilon'_{int}, \ i \in \mathcal{C}_{nt}.$

- Dynamic Markov model with fixed effect.
 - Similar to the static model with FE.
 - Similar limitations.
- Dynamic Markov model with random effect.
 - Difficulties depending on how the Markov chain starts.
 - If the first choice i_0 is truly exogenous \rightarrow similar to the static model with RE.

What if i_{n0} is not exogenous (i.e. stochastic)?

$$U_{in1} = V_{in1} + \alpha_{in} + \gamma y_{in0} + \varepsilon'_{in1}, \ i \in \mathcal{C}_{n1}.$$

- The first choice i_{n0} is dependent on the agent's effect α_{in} .
- So, the explanatory variable y_{in0} is correlated with α_{in} .
- This is called *endogeneity*.
- Solution: use the Wooldridge approach.

Dynamic Markov model with RE - Wooldridge

• Conditional on y_{in0} , we have a dynamic Markov model with RE as before.

$$U_{int} = V_{int} + \alpha_{in} + \gamma y_{in(t-1)} + \varepsilon'_{int}, \ i \in \mathcal{C}_{nt}.$$

• Contribution of individual n to the log likelihood, given i_{n0} and α_n

$$P(i_{n1}, i_{n2}, \dots, i_{nT} | i_{n0}, \alpha_n) = \prod_{t=1}^T P(i_{nt} | i_{n0}, \alpha_n).$$

• We integrate out α_n :

$$P(i_{n1}, i_{n2}, \dots, i_{nT} | i_{n0}) = \int_{\alpha} \prod_{t=1}^{T} P(i_{nt} | i_{n0}, \alpha) f(\alpha | i_{n0}) d\alpha.$$

Dynamic Markov model with RE - Wooldridge

• The main difference between static model with RE and dynamic model with RE is the term

 $f(\alpha|i_{n0})$

- It captures the distribution of the panel effects, knowing the first choice.
- This can be approximated by, for instance,

$$\alpha_n = a + by_{n0} + cx_n + \xi_n, \ \xi_n \sim N(0, \Sigma_\alpha).$$

- *a*, *b* and *c* are vectors and Σ_{α} a matrix of parameters to be estimated.
- x_n capture the entire history (t = 1, ..., T) for agent n.
- This addresses the endogeneity issue.

Cherchi and Ortuzar (2002) Mixed RP/SP models incorporating interaction effects, Transportation 29(4), pp. 371-395.

Discrete Panel Data - p. 28/??

Context

- Study done in 1998, Sardinia Island, Italy
- Cagliari-Assimini corridor (20km)
- Modal shares: car (75%), bus (20%), train (3%), other (2%)
- RP/SP data.
- Not time series, but panel structure of SP data.
- *t* is the index of the choice experiment instead of time.
- t = 0 corresponds to the RP observation.
- Panel effect is captured.

Estimation results

	Log	it	with panel effect	
Variable	Estimate	<i>t</i> -test	Estimate	t-test
Cte. train	-0.727	-3.130	-0.745	-3.047
Cte. car	-2.683	-6.378	-2.770	-5.775
Travel time (min)	-0.061	-4.120	-0.067	-3.722
Travel cost/wage rate (euros)	-1.895	-3.198	-2.364	-4.454
Waiting time (min)	-0.252	-6.247	-0.270	-6.705
Comfort low	-1.990	-7.328	-2.075	-6.219
Comfort avg.	-1.107	-6.330	-1.187	-5.546
Transfers	-0.286	-1.378	-0.316	-1.000
Panel effect std. dev.			0.840	6.348
Log likelihood	-511.039		-502.959	
$ ho^2$	0.116		0.130	

Discrete Panel Data – p. 30/??

Average value of time by purpose (euros/min)

		Logit	with panel effect
Work	321 obs.	0.20	0.17
Study	285 obs.	0.05	0.04
Personal business	164 obs.	0.13	0.11
Leisure	64 obs.	0.16	0.14

Discrete Panel Data – p. 31/??

Comments

- Panel effect is significant.
- Significant improvement of the fit.
- With small samples, the gain in efficiency obtained from the panel effect may significantly improve the estimates.

Discrete Panel Data – p. 32/??

Summary

- Static model
 - Straightforward extension of cross-sectional specification.
 - Two main limitations: serial correlation and dynamics.
- Panel effect
 - Deals with serial correlation.
 - Fixed effect:
 - Static model with additional parameters.
 - Not operational in most practical cases.
 - Random effect:
 - Modifies the log likelihood function.
 - Must integrate the product of the choice probabilities over time.

Summary

- Dynamic model, with a Markov assumption.
 - Static model with an additional variable: the previous choice.
- Dynamic model with panel effect
 - Both can be combined.
 - Must capture the relation between the first choice and the panel effect.
- Application
 - Illustrates the importance of the panel effect.

