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Introduction

• Impossible to determine the most appropriate model
specification

• A good fit does not mean a good model

• Formal testing is necessary, but not sufficient

• No clear-cut rules can be given

• Subjective judgments of the analyst

• Good modeling = good judgment + good analysis
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Introduction

Hypothesis testing. Two propositions

• H0 null hypothesis

• H1 alternative hypothesis

Analogy with a court trial:

• H0: the defendant

• “Presumed innocent until proved guilty”

• H0 is accepted, unless the data argue strongly to the contrary

• Benefit of the doubt
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Introduction

Errors are always possible:

Accept H0 Reject H0

H0 is true Type I error (proba. α)
H0 is false Type II error (proba. β)

• Type I error: send an innocent to jail

• Type II error: free a culprit

Tests – p. 4/79



Errors

• For a given sample size N , there is a trade-off between α and β.

• The only way to reduce both Type I and Type II error
probabilities is to increase N .

• π = 1− β is the power of the test, that is the probability of
rejecting H0 when H0 is false.

• H1 is usually a composite hypothesis. π can only be
determined for a simple hypothesis.

• In general, α is fixed by the analyst, and the power is
maximized by the test.
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Introduction

• Informal tests

• Asymptotic t-test

• Likelihood ratio tests
• Specific attributes
• Taste variations, market segmentation
• Nonlinear specifications

• Goodness-of-fit measures

• Non nested hypotheses,

• Prediction tests
• Outlier analysis
• Market segmentation tests
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Informal tests

Wilkinson (1999) “The grammar of graphics”. Springer

... some researchers who use statistical methods pay
more attention to goodness of fit than to the meaning
of the model... Statisticians must think about what the
models mean, regardless of fit, or they will promulgate

nonsense.

• Is the sign of the coefficient consistent with expectation?

• Are the trade offs meaningful?
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Informal tests

Sign of the coefficient

Example: Netherlands Mode Choice Case
Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.798 0.275 -2.90 0.00

2 βcost -0.0499 0.0107 -4.67 0.00

3 βtime -1.33 0.354 -3.75 0.00
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Informal tests

Value of trade-offs
• How much are we ready to pay for an improvement of the

level-of-service?

• Example: reduction of travel time

• The increase in cost must be exactly compensated by the
reduction of travel time

βcost(C +∆C) + βtime(T −∆T ) + . . . = βcostC + βtimeT + . . .

Therefore,
∆C

∆T
=

βtime

βcost
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Informal tests

Value of trade-offs
In general:

• Trade-off: ∂V/∂x
∂V/∂xC

• Units: 1/Hour
1/Guilder =

Guilder
Hour

Name Value Guilders Euros CHF
Cte. car -0.798 15.97 7.25 11.21

βcost -0.0499
βtime -1.33 26.55 12.05 18.64 (/Hour)
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t-test

Is the parameter θ significantly different from a given value θ∗?

• H0 : θ = θ∗

• H1 : θ 6= θ∗

Under H0, if θ̂ is normally distributed with known variance σ2

θ̂ − θ∗

σ
∼ N(0, 1).

Therefore

P (−1.96 ≤
θ̂ − θ∗

σ
≤ 1.96) = 0.95 = 1− 0.05
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t-test

P (−1.96 ≤
θ̂ − θ∗

σ
≤ 1.96) = 0.95 = 1− 0.05

H0 can be rejected at the 5% level (α = 0.05) if

∣∣∣∣
θ̂ − θ∗

σ

∣∣∣∣ ≥ 1.96.

• If θ̂ asymptotically normal

• If variance unknown

• A t test should be used with n degrees of freedom.

• When n ≥ 30, the Student t distribution is well approximated by
a N(0, 1)
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Estimator of the asymptotic variance for ML

• Cramer-Rao Bound with the estimated parameters

V̂CR = −∇2 lnL(θ̂)−1

• Berndt, Hall, Hall & Haussman (BHHH) estimator

V̂BHHH =

(
n∑

i=1

ĝiĝ
T
i

)−1

where

ĝi =
∂ ln fX(xi; θ)

∂θ
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Estimator of the asymptotic variance for ML

Robust estimator:
V̂CRV̂

−1
BHHH V̂CR

• The three are asymptotically equivalent

• This one is more robust when the model is misspecified

• Biogeme uses Cramer-Rao and the robust estimators
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t-test

Example: Netherlands Mode Choice
Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.798 0.275 -2.90 0.00

2 βcost -0.0499 0.0107 -4.67 0.00

3 βtime -1.33 0.354 -3.75 0.00

• H0 : βtime = 0: rejected at the 5% level
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t-test

Swissmetro: model specification

Car Train Swissmetro
Cte. car 1 0 0
Cte. train 0 1 0

βcost cost cost cost
βtime time time time

βheadway 0 headway headway
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t-test

Swissmetro: coefficient estimates
Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.262 0.0615 -4.26 0.00

2 Cte. train -0.451 0.0932 -4.84 0.00

3 βcost -0.0108 0.000682 -15.90 0.00

4 βheadway -0.00535 0.000983 -5.45 0.00

5 βtime -0.0128 0.00104 -12.23 0.00

• H0 : βtime = 0: rejected at the 5% level

• H0 : βcost = 0: rejected at the 5% level

• H0 : βheadway = 0: rejected at the 5% level
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t-test

Comparing two coefficients:
H0 : β1 = β2. The t statistic is given by

β̂1 − β̂2√
var(β̂1 − β̂2)

var(β̂1 − β̂2) = var(β̂1) + var(β̂2)− 2 cov(β̂1, β̂2)

Tests – p. 18/79



t-test

Example: alternative specific coefficient

Car Train Swissmetro
Cte. car 1 0 0
Cte. train 0 1 0

βcost cost cost cost
βtime car time 0 0
βtime train 0 time 0

βtime Swissmetro 0 0 time
βheadway 0 headway headway
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t-test

Coefficient estimates:
Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.371 0.120 -3.08 0.00

2 Cte. train 0.0429 0.121 0.36 0.72

3 βcost -0.0107 0.000669 -16.00 0.00

4 βheadway -0.00532 0.000994 -5.35 0.00

5 βtime car -0.0112 0.00109 -10.28 0.00

6 βtime Swissmetro -0.0116 0.00182 -6.40 0.00

7 βtime train -0.0156 0.00109 -14.29 0.00
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t-test

Variance-covariance matrix:
Parameter Parameter 2 Covariance Correlation t-stat

βtime car βtime train 7.57e-07 0.634 4.70

βtime car βtime Swissmetro 1.38e-06 0.696 0.31

βtime Swissmetro βtime train 1.47e-06 0.740 3.19

• H0 : βtime car = βtime train: reject

• H0 : βtime car = βtime Swissmetro: cannot reject

• H0 : βtime Swissmetro = βtime train: reject
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Likelihood ratio test

• Used for “nested” hypotheses

• One model is a special case of the other obtained from a set of
restrictions on the parameters

• H0: restrictions are valid

−2(L(β̂R)− L(β̂U )) ∼ χ2
(KU−KR)

• L(β̂R) is the log likelihood of the restricted model

• L(β̂U ) is the log likelihood of the unrestricted model

• KR is the number of parameters in the restricted model

• KU is the number of parameters in the unrestricted model
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Likelihood ratio test

Example: Netherlands Mode Choice Case.

• Unrestricted model:
• 3 parameters: βtime, βcost, Cte. car.
• Final log likelihood: -123.133

• Restricted model
• Restrictions: βtime = βcost = 0

• 1 parameter: Cte. car.
• Final log likelihood: -148.347

• Test: −2(−148.35− 123.13) = 50.43

• χ2, 2 degrees of freedom, 95% quantile: 5.99

• H0 is rejected

• The unrestricted model is preferred.
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Likelihood ratio test

Test of generic attributes: Swissmetro

• Unrestricted model:

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime car time 0 0

βtime train 0 time 0

βtime Swissmetro 0 0 time

βheadway 0 headway headway
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Likelihood ratio test

Test of generic attributes: Swissmetro

• Restricted model:

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime time time time

βheadway 0 headway headway

• Restrictions: βtime car = βtime train = βtime Swissmetro
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Likelihood ratio test

• Log likelihood of the restricted model: -5315.386

• Number of parameters for the restricted model: 5

• Log likelihood of the unrestricted model: -5297.488

• Number of parameters for the restricted model: 7

• Test: 35.796

• χ2, 2 degrees of freedom, 95% quantile: 5.99

• Reject the restrictions

• The alternative specific specification is preferred
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Likelihood ratio test

Test of taste variations

• Unrestricted model: a different set of parameters for each
income group

• 1: [0–50], 2: [50–100], 3:[100–], 4: unknown (KCHF)

• Restricted model: same parameters across income groups

• Socio-economic characteristics: for i = 1, . . . , 4

Ii =

{
1 if individual belongs to income group i

0 otherwise
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Likelihood ratio test: restricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime car time 0 0

βtime train 0 time 0

βtime Swissmetro 0 0 time

βheadway 0 headway headway
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Likelihood ratio test: unrestricted model

Car Train Swissmetro

Cte. car (income 1) I1 0 0

Cte. train (income 1) 0 I1 0

βcost,1 cost ·I1 cost ·I1 cost ·I1

βtime car,1 time ·I1 0 0

βtime train,1 0 time ·I1 0

βtime Swissmetro,1 0 0 time ·I1

βheadway,1 0 headway ·I1 headway ·I1

Cte. car (income 2) I2 0 0

Cte. train (income 2) 0 I2 0

βcost,1 cost ·I2 cost ·I2 cost ·I2

βtime car,1 time ·I2 0 0

βtime train,1 0 time ·I2 0

βtime Swissmetro,1 0 0 time ·I2

βheadway,1 0 headway ·I2 headway ·I2
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Likelihood ratio test: unrestricted model (ctd)

Car Train Swissmetro

Cte. car (income 3) I3 0 0

Cte. train (income 3) 0 I3 0

βcost,1 cost ·I3 cost ·I3 cost ·I3

βtime car,1 time ·I3 0 0

βtime train,1 0 time ·I3 0

βtime Swissmetro,1 0 0 time ·I3

βheadway,1 0 headway ·I3 headway ·I3

Cte. car (income 4) I4 0 0

Cte. train (income 4) 0 I4 0

βcost,1 cost ·I4 cost·I4 cost ·I4

βtime car,1 time ·I4 0 0

βtime train,1 0 time ·I4 0

βtime Swissmetro,1 0 0 time ·I4

βheadway,1 0 headway ·I4 headway ·I4
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Likelihood ratio test: unrestricted model (ctd)

Estimation:

• Divide the sample into 4 subsets, corresponding to the income
groups

• Estimate the restricted model on each of the sample separately

• Add up the log likelihood

Group Log likelihood Sample size
1 -926.84 1161
2 -1679.53 2133
3 -1946.75 2907
4 -478.4 567

Total -5031.51 6768
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Likelihood ratio test

• Unrestricted model:
• 7× 4 = 28 parameters
• Final log likelihood: -5031.51

• Restricted model:
• 7 parameters
• Final log likelihood: -5297.488

• Test: 531.956

• χ2, 21 degrees of freedom, 95% quantile: 32.67

• H0 is rejected

• There is evidence of taste variation per income group
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Nonlinear specifications

• Consider a variable x of the model (travel time, say)

• Unrestricted model: V is a nonlinear function of x

• Restricted model: V is a linear function of x

• We consider the following nonlinear specifications:
• Piecewise linear
• Power series
• Box-Cox transforms

• For each of them, the linear specification is obtained using
simple restrictions on the nonlinear specification
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Piecewise linear specification

• Partition the range of values of x into M intervals [am, am+1],
m = 1, . . . ,M

• For example, the partition [0–500], [500–1000], [1000–]
corresponds to

M = 3, a1 = 0, a2 = 500, a3 = 1000, a4 = +∞

• The slope of the utility function may vary across intervals

• Therefore, there will be M parameters instead of 1

• The function must be continuous
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Piecewise linear specification

• Linear specification:
Vi = βxi + · · ·

• Piecewise linear specification

Vi =

M∑

m=1

βmxim + · · ·

where
xim = max(0,min(x− am, am+1 − am))

that is

xim =





0 if x < am

x− am if am ≤ x < am+1

am+1 − am if am+1 ≤ x
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Piecewise linear specification

Example: M = 3, a1 = 0, a2 = 500, a3 = 1000, a4 = +∞

x x1 x2 x3

40 40 0 0
600 500 100 0

1200 500 500 200
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Piecewise linear specification
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Piecewise linear specification: restricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime time time time

βheadway 0 headway headway
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Piecewise linear specification: unrestricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime,1 time1 time1 time1

βtime,2 time2 time2 time2

βtime,3 time3 time3 time3

βheadway 0 headway headway

Tests – p. 39/79



Piecewise linear specification

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.145 0.0473 -3.05 0.00

2 Cte. train -0.265 0.0730 -3.64 0.00

3 βcost -0.0113 0.000703 -16.04 0.00

4 βheadway -0.00544 0.000996 -5.46 0.00

5 βtime,1 -0.0155 0.000655 -23.58 0.00

6 βtime,2 0.0137 0.00144 9.47 0.00

7 βtime,3 -0.0168 0.00471 -3.56 0.00
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Likelihood ratio test

• Unrestricted model:
• 7 parameters
• Final log likelihood: -5214.741

• Restricted model:
• 5 parameters
• Final log likelihood: -5315.386

• Test: 201.29

• χ2, 2 degrees of freedom, 95% quantile: 5.99

• H0 is rejected

• The linear specification is rejected
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Power series

• Idea: if the utility function is nonlinear in x, it can be
approximated by a polynomial if degree M

• Linear specification:
Vi = βxi + · · ·

• Power series

Vi =

M∑

m=1

βmxm
i + · · ·
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Power series:M=3
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Power series: restricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime time time time

βheadway 0 headway headway
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Power series: unrestricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime,1 time time time

βtime,2 time2/105 time2/105 time2/105

βtime,3 time3/105 time3/105 time3/105

βheadway 0 headway headway
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Power series: unrestricted model

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.0556 0.0493 -1.13 0.26

2 Cte. train -0.148 0.0752 -1.96 0.05

3 βcost -0.0111 0.000693 -15.98 0.00

4 βheadway -0.00536 0.000991 -5.41 0.00

5 βtime,1 -0.0247 0.00123 -20.04 0.00

6 βtime,2 3.21 0.322 9.98 0.00

7 βtime,3 -0.00112 0.000181 -6.18 0.00

Tests – p. 46/79



Likelihood ratio test

• Unrestricted model:
• 7 parameters
• Final log likelihood: -5223.233

• Restricted model:
• 5 parameters
• Final log likelihood: -5315.386

• Test: 184.306

• χ2, 2 degrees of freedom, 95% quantile: 5.99

• H0 is rejected

• The linear specification is rejected
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Box-Cox transform

• Let x > 0 be a positive variable

• Its Box-Cox transform is defined as

B(x, λ) =
xλ − 1

λ
,

• Special cases:

B(x, 1) = x− 1, lim
λ→0

B(x, λ) = lnx.

• Linear specification:
Vi = βxi + · · ·

• Box-Cox specification

Vi = βB(x, λ) + · · · = β
xλ − 1

λ
+ · · ·
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Box-Cox transform
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Box-Cox: restricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime time time time

βheadway 0 headway headway
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Box-Cox: unrestricted model

Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost cost cost cost

βtime B(time,λ) B(time,λ) B(time,λ)

βheadway 0 headway headway

λ

Note: specification tables are not designed for nonlinear
specifications.
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Box-Cox: unrestricted model

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.112 0.0517 -2.16 0.03

2 Cte. train -0.236 0.0781 -3.02 0.00

3 βcost -0.0108 0.000680 -15.87 0.00

4 βheadway -0.00533 0.000985 -5.41 0.00

5 βtime -0.160 0.0568 -2.82 0.00

6 λ 0.510 0.0776 6.57 0.00
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Likelihood ratio test

• Unrestricted model:
• 6 parameters
• Final log likelihood: -5276.353

• Restricted model:
• 5 parameters
• Final log likelihood: -5315.386

• Test: 78.066

• χ2, 1 degree of freedom, 95% quantile: 3.84

• H0 is rejected

• The linear specification is rejected
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Comparison
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Non-nested hypotheses

• Need to compare two different models

• If none of the models is a restricted version of the other, we talk
about non-nested models

• The likelihood ratio test cannot be used

• Three possible tests:
• Cox test
• Davidson-McKinnon J-test
• Horowitz test ρ̄2
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Cox test

• We want to test model 1 against model 2

• We generate a composite model C such that both models 1
and 2 are restricted cases of model C.

• We test 1 against C using the likelihood ratio test

• We test 2 against C using the likelihood ratio test

• Possible outcomes:
• Only one of the two models is rejected. Keep the other.
• Both models are rejected. Better models should be

developed.
• Both models are accepted. Use another test.
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Cox test

Model 1
Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost car cost 0 0

βcost Swissmetro 0 0 cost

βcost train 0 cost 0

βgen. abo. 0 GA GA

βheadway 0 headway headway

βtime car time 0 0

βtime Swissmetro 0 0 time

βtime train 0 time 0
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Cox test: estimates for model 1

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.403 0.116 -3.48 0.00

2 Cte. train 0.126 0.116 1.08 0.28

3 βcost car -0.00776 0.00150 -5.18 0.00

4 βcost Swissmetro -0.0108 0.000828 -12.99 0.00

5 βcost train -0.0300 0.00200 -14.97 0.00

6 βgen. abo. 0.513 0.194 2.65 0.01

7 βheadway -0.00535 0.00101 -5.31 0.00

8 βtime car -0.0129 0.00162 -7.94 0.00

9 βtime Swissmetro -0.0111 0.00179 -6.19 0.00

10 βtime train -0.00866 0.00120 -7.22 0.00
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Cox test

Model 2: cost of car appears as a log
Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βlog cost car log(cost) 0 0

βcost Swissmetro 0 0 cost

βcost train 0 cost 0

βgen. abo. 0 GA GA

βheadway 0 headway headway

βtime car time 0 0

βtime Swissmetro 0 0 time

βtime train 0 time 0
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Cox test: estimates for model 2

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car 1.39 0.437 3.18 0.00

2 Cte. train 0.138 0.117 1.18 0.24

3 βlog cost car -0.547 0.135 -4.04 0.00

4 βcost Swissmetro -0.0105 0.000812 -12.96 0.00

5 βcost train -0.0297 0.00199 -14.93 0.00

6 βgen. abo. 0.560 0.193 2.90 0.00

7 βheadway -0.00531 0.00101 -5.28 0.00

8 βtime car -0.0133 0.00170 -7.83 0.00

9 βtime Swissmetro -0.0110 0.00179 -6.16 0.00

10 βtime train -0.00868 0.00120 -7.23 0.00
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Cox test

Log likelihood # parameters
Model 1 (linear car cost) -5047.205 10

Model 2 (log car cost) -5056.262 10

• The fit of model 1 is better

• But we cannot apply a likelihood ratio test

• We estimate a composite model
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Cox test

Composite model
Car Train Swissmetro

Cte. car 1 0 0

Cte. train 0 1 0

βcost car cost 0 0

βlog cost car log(cost) 0 0

βcost Swissmetro 0 0 cost

βcost train 0 cost 0

βgen. abo. 0 GA GA

βheadway 0 headway headway

βtime car time 0 0

βtime Swissmetro 0 0 time

βtime train 0 time 0
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Cox test: estimates of the composite model

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -1.26 0.865 -1.46 0.14

2 Cte. train 0.118 0.116 1.02 0.31

3 βcost car -0.0105 0.00279 -3.76 0.00

4 βlog cost car 0.258 0.267 0.97 0.33

5 βcost Swissmetro -0.0108 0.000827 -13.00 0.00

6 βcost train -0.0299 0.00200 -14.96 0.00

7 βgen. abo. 0.501 0.193 2.59 0.01

8 βheadway -0.00535 0.00101 -5.31 0.00

9 βtime car -0.0130 0.00170 -7.65 0.00

10 βtime Swissmetro -0.0110 0.00179 -6.16 0.00

11 βtime train -0.00858 0.00120 -7.18 0.00
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Cox test

• Test 1: model 1 vs. composite
• Unrestricted model:

• 11 parameters
• Final log likelihood: -5046.418

• Restricted model:
• 10 parameters
• Final log likelihood: -5047.205

• Test: 1.58
• χ2, 1 degree of freedom, 95% quantile: 3.84
• H0 cannot be rejected
• Model 1 cannot be rejected
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Cox test

• Test 2: model 2 vs. composite
• Unrestricted model:

• 11 parameters
• Final log likelihood: -5046.418

• Restricted model:
• 10 parameters
• Final log likelihood: -5056.262

• Test: 18.104
• χ2, 1 degree of freedom, 95% quantile: 3.84
• H0 can be rejected
• Model 2 can be rejected

Conclusion: model 1 (linear car cost) is preferred over model 2 (log
car cost).
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Davidson and McKinnon J-test

• Model 1: U (1)
n = V

(1)
n (x

(1)
n |β) + ε

(1)
n

• Model 2: U (2)
n = V

(2)
n (x

(2)
n |γ) + ε

(2)
n

• Hypothesis H0: model 1 is correct.

• Procedure:
1. Estimate model 2 and obtain γ̂.
2. Consider the composite model

U (1)
n = (1− α)V (1)

n (x(1)
n |β) + αV (2)

n (x(2)
n |γ̂) + εn.

3. Estimate β and α.
4. Under H0, we have α = 0.
5. It can be tested with a t-test.
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Davidson and McKinnon J-test: test model 1

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car -0.535 0.158 -3.39 0.00

2 Cte. Swissmetro -0.126 0.117 -1.08 0.28

3 βcost car -0.00584 0.00231 -2.53 0.01

4 βcost Swissmetro -0.0108 0.000831 -12.94 0.00

5 βcost train -0.0300 0.00201 -14.91 0.00

6 βgen. abo. 0.513 0.194 2.64 0.01

7 βheadway -0.00535 0.00101 -5.29 0.00

8 βtime car -0.0129 0.00163 -7.92 0.00

9 βtime Swissmetro -0.0111 0.00180 -6.17 0.00

10 βtime train -0.00866 0.00120 -7.19 0.00

11 α 0.00355 0.00277 1.28 0.20
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Davidson and McKinnon J-test: test model 1

• The hypothesis that α = 0 cannot be rejected.

• Model 1 cannot be rejected.

Tests – p. 68/79



Davidson and McKinnon J-test: test model 2

Robust

Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 Cte. car 5.16 13.5 0.38 0.70

2 Cte. Swissmetro -0.164 0.376 -0.44 0.66

3 βcost Swissmetro -0.0100 0.00221 -4.53 0.00

4 βcost train -0.0292 0.00613 -4.77 0.00

5 βgen. abo. 0.665 0.695 0.96 0.34

6 βheadway -0.00524 0.00324 -1.61 0.11

7 βlog cost car -1.73 4.09 -0.42 0.67

8 βtime car -0.0143 0.00862 -1.66 0.10

9 βtime Swissmetro -0.0108 0.00529 -2.05 0.04

10 βtime train -0.00873 0.00393 -2.22 0.03

11 α 0.687 0.775 0.89 0.38
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Davidson and McKinnon J-test: test model 2

• The hypothesis that α = 0 cannot be rejected.

• Model 2 cannot be rejected.

• The test is not conclusive.
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Goodness-of-fit

ρ2 = 1−
L(β̂)

L(0)

• ρ2 = 0: trivial model, equal probabilities

• ρ2 = 1: perfect fit.

Warning: L(β̂) is a biased estimator of the expectation over all
samples. Use L(β̂)−K instead.

ρ̄2 = 1−
L(β̂)−K

L(0)

Tests – p. 71/79



ρ̄2 test (Horowitz)

Compare model 0 and model 1.

• We expect that the best model corresponds to the best fit.

• We will be wrong if M0 is the true model and M1 produces a
better fit.

• What is the probability that this happens?

• If this probability is low, M0 can be rejected.

P (ρ̄1
2 − ρ̄0

2 > z|M0) ≤ Φ
(
−
√

−2zL(0) + (K1 −K0)
)

where

• ρ̄ℓ
2 is the adjusted likelihood ratio index of model ℓ = 0, 1

• Kℓ is the number of parameters of model ℓ

• Φ is the standard normal CDF.
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ρ̄2 test (Horowitz)

Back to the example:

ρ̄2 # parameters
Model 0 (log car cost) 0.272 10

Model 1 (linear car cost) 0.273 10

P (ρ̄1
2 − ρ̄0

2 > z|M0) ≤ Φ
(
−
√

−2zL(0) + (K1 −K0)
)

P (ρ̄1
2 − ρ̄0

2 > 0.001|M0) ≤ Φ
(
−
√

−2z(−6958.425) + (10− 10)
)

P (ρ̄1
2 − ρ̄0

2 > 0.001|M0) ≤ Φ (−3.73) ≈ 0

Therefore, M0 can be rejected, and the linear specification is
preferred.
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ρ̄2 test (Horowitz)

In practice,

• if the sample is large enough (i.e. more than 250 observations),

• if the values of the ρ̄2 differ by 0.01 or more,

• the model with the lower ρ̄2 is almost certainly incorrect.
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Outlier analysis

• Apply the model on the sample

• Examine observations where the predicted probability is the
smallest for the observed choice

• Test model sensitivity to outliers, as a small probability has a
significant impact on the log likelihood

• Potential causes of low probability:
• Coding or measurement error in the data
• Model misspecification
• Unexplainable variation in choice behavior
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Outlier analysis

• Coding or measurement error in the data
• Look for signs of data errors
• Correct or remove the observation

• Model misspecification
• Seek clues of missing variables from the observation
• Keep the observation and improve the model

• Unexplainable variation in choice behavior
• Keep the observation
• Avoid over fitting of the model to the data
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Market segments

• Compare predicted vs. observed shares per segment

• Let Ng be the set of samples individuals in segment g

• Observed share for alt. i and segment g

Sg(i) =
∑

n∈Ng

yin/Ng

• Predicted share for alt. i and segment g

Ŝg(i) =
∑

n∈Ng

Pn(i)/Ng
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Market segments

Note:

• With a full set of constants for segment g:

∑

n∈Ng

yin =
∑

n∈Ng

Pn(i)

• Do not saturate the model with constants
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Conclusions

• Tests are designed to check meaningful hypotheses

• Do not test hypotheses that do not make sense

• Do not apply the tests blindly

• Always use your judgment.
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