Logit with multiple alternatives

\author{
Michel Bierlaire
 ```
michel.bierlaire@epfl.ch

```
}

Transport and Mobility Laboratory

\section*{Logit Model}

For all \(i \in \mathcal{C}_{n}\),
\[
U_{i n}=V_{i n}+\varepsilon_{i n}
\]
- What is \(\mathcal{C}_{n}\) ?
- What is \(\varepsilon_{i n}\) ?
- What is \(V_{i n}\) ?

\section*{Choice set}

Universal choice set
- All potential alternatives for the population
- Restricted to relevant alternatives

Mode choice:
\begin{tabular}{lll} 
driving alone & sharing a ride & taxi \\
motorcycle & bicycle & walking \\
transit bus & rail rapid transit & horse
\end{tabular}

\section*{Choice set}

Individual's choice set
- No driver license
- No auto available
- Awareness of transit services
- Transit services unreachable
- Walking not an option for long distance

\section*{Choice set}

Individual's choice set
Choice set generation is tricky
- How to model "awareness"?
- What does "long distance" exactly mean?
- What does "unreachable" exactly mean?

We assume here deterministic rules

\section*{Derivation of the logit model}

Main assumption: \(\varepsilon_{i n}\) are
- extreme value \(\mathrm{EV}(0, \mu)\),
- independent and
- identically distributed.

Comments:
- Independence: across \(i\) and \(n\).
- Identical distribution: same scale parameter \(\mu\) across \(i\) and \(n\).

\section*{Derivation of the logit model}

Reminder: binary case
- \(\mathcal{C}_{n}=\{i, j\}\)
- \(U_{i n}=V_{i n}+\varepsilon_{i n}\)
- \(\varepsilon_{i n} \sim \mathrm{EV}(0, \mu)\)
- Probability
\[
P\left(i \mid \mathcal{C}_{n}=\{i, j\}\right)=\frac{e^{\mu V_{i n}}}{e^{\mu V_{i n}}+e^{\mu V_{j n}}}
\]

\section*{Derivation of the logit model}
- \(\mathcal{C}_{n}=\left\{1, \ldots, J_{n}\right\}\)
- \(U_{i n}=V_{i n}+\varepsilon_{i n}\)
- \(\varepsilon_{i n} \sim \operatorname{EV}(0, \mu)\)
- \(\varepsilon_{i n}\) i.i.d.
- Probability
\[
P\left(i \mid \mathcal{C}_{n}\right)=P\left(V_{i n}+\varepsilon_{i n} \geq \max _{j=1, \ldots, J_{n}} V_{j n}+\varepsilon_{j n}\right)
\]
- Assume without loss of generality (wlog) that \(i=1\)
\[
P\left(1 \mid \mathcal{C}_{n}\right)=P\left(V_{1 n}+\varepsilon_{1 n} \geq \max _{j=2, \ldots, J_{n}} V_{j n}+\varepsilon_{j n}\right)
\]

\section*{Derivation of the logit model}
- Define a composite alternative: "anything but one"
- Associated utility:
\[
U^{*}=\max _{j=2, \ldots, J_{n}}\left(V_{j n}+\varepsilon_{j n}\right)
\]
- From a property of the EV distribution
\[
U^{*} \sim \mathrm{EV}\left(\frac{1}{\mu} \ln \sum_{j=2}^{J_{n}} e^{\mu V_{j n}}, \mu\right)
\]

\section*{Derivation of the logit model}
- From another property of the EV distribution
\[
U^{*}=V^{*}+\varepsilon^{*}
\]
where
\[
V^{*}=\frac{1}{\mu} \ln \sum_{j=2}^{J_{n}} e^{\mu V_{j n}}
\]
and
\[
\varepsilon^{*} \sim \mathrm{EV}(0, \mu)
\]

\section*{Derivation of the logit model}
- Therefore
\[
\begin{aligned}
P\left(1 \mid \mathcal{C}_{n}\right) & =P\left(V_{1 n}+\varepsilon_{1 n} \geq \max _{j=2, \ldots, J_{n}} V_{j n}+\varepsilon_{j n}\right) \\
& =P\left(V_{1 n}+\varepsilon_{1 n} \geq V^{*}+\varepsilon^{*}\right)
\end{aligned}
\]
- This is a binary choice model
\[
P\left(1 \mid \mathcal{C}_{n}\right)=\frac{e^{\mu V_{1 n}}}{e^{\mu V_{1 n}}+e^{\mu V^{*}}}
\]
where
\[
V^{*}=\frac{1}{\mu} \ln \sum_{j=2}^{J_{n}} e^{\mu V_{j n}}
\]

\section*{Derivation of the logit model}
- We have \(e^{\mu V^{*}}=e^{\ln \sum_{j=2}^{J_{n}} e^{\mu V_{j n}}}=\sum_{j=2}^{J_{n}} e^{\mu V_{j n}}\)
- and
\[
\begin{aligned}
P\left(1 \mid \mathcal{C}_{n}\right) & =\frac{e^{\mu V_{1 n}}}{e^{\mu V_{1 n}}+e^{\mu V^{*}}} \\
& =\frac{e^{\mu V_{1 n}}}{e^{\mu V_{1 n}}+\sum_{j=2}^{J_{n}} e^{\mu V_{j n}}} \\
& =\frac{e^{\mu V_{1 n}}}{\sum_{j=1}^{J_{n}} e^{\mu V_{j n}}}
\end{aligned}
\]

\section*{Derivation of the logit model}
- The scale parameter \(\mu\) is not identifiable: \(\mu=1\).
- Warning: not identifiable \(\neq\) not existing
- \(\mu \rightarrow 0\), that is variance goes to infinity
\[
\lim _{\mu \rightarrow 0} P\left(i \mid C_{n}\right)=\frac{1}{J_{n}} \quad \forall i \in \mathcal{C}_{n}
\]
- \(\mu \rightarrow+\infty\), that is variance goes to zero
\[
\begin{aligned}
\lim _{\mu \rightarrow \infty} P\left(i \mid C_{n}\right) & =\lim _{\mu \rightarrow \infty} \frac{1}{1+\sum_{j \neq i} e^{\mu\left(V_{j n}-V_{i n}\right)}} \\
& = \begin{cases}1 & \text { if } V_{i n}>\max _{j \neq i} V_{j n} \\
0 & \text { if } V_{i n}<\max _{j \neq i} V_{j n}\end{cases}
\end{aligned}
\]

\section*{Derivation of the logit model}
- \(\mu \rightarrow+\infty\), that is variance goes to zero (ctd.)
- What if there are ties?
- \(V_{i n}=\max _{j \in \mathcal{C}_{n}} V_{j n}, i=1, \ldots, J_{n}^{*}\)
- Then
\[
P\left(i \mid \mathcal{C}_{n}\right)=\frac{1}{J_{n}^{*}} \quad i=1, \ldots, J_{n}^{*}
\]
and
\[
P\left(i \mid \mathcal{C}_{n}\right)=0 \quad i=J_{n}^{*}+1, \ldots, J_{n}
\]

\section*{Systematic part of the utility function}
\[
V_{i n}=V\left(z_{i n}, S_{n}\right)
\]
where
- \(z_{i n}\) is a vector of attributes of alternative \(i\) for individual \(n\)
- \(S_{n}\) is a vector of socio-economic characteristics of \(n\)

Outline:
- Functional form: linear utility
- Explanatory variables: What is exactly contained in \(z_{i n}\) and \(S_{n}\) ?
- Functional form: capturing nonlinearities
- Interactions

\section*{Functional form: linear utility}

Notation:
\[
x_{i n}=\left(z_{i n}, S_{n}\right)
\]

In general, linear-in-parameters utility functions are used
\[
V_{i n}=V\left(z_{i n}, S_{n}\right)=V\left(x_{i n}\right)=\sum_{p} \beta_{p}\left(x_{i n}\right)_{p}
\]

Not as restrictive as it may seem

\section*{Explanatory variables: alternatives attributes}
- Numerical and continuous
- \(\left(z_{i n}\right)_{p} \in \mathbb{R}, \forall i, n, p\)
- Associated with a specific unit

\section*{Examples:}
- Auto in-vehicle time (in min.)
- Transit in-vehicle time (in min.)
- Auto out-of-pocket cost (in cents)
- Transit fare (in cents)
- Walking time to the bus stop (in min.)

Straightforward modeling

GCOLE POLYTICHNIQUE
fédirale de Lausanne

\section*{Explanatory variables: alternatives attributes}
- \(V_{i n}\) is unitless
- Therefore, \(\beta\) depends on the unit of the associated attribute
- Example: consider two specifications
\[
\begin{aligned}
V_{i n} & =\beta_{1} \mathrm{TT}_{i n}+\cdots \\
V_{i n} & =\beta_{1}^{\prime} \mathrm{TT}_{\text {in }}^{\prime}+\cdots
\end{aligned}
\]
- If \(\mathrm{TT}_{i n}\) is a number of minutes, the unit of \(\beta_{1}\) is \(1 / \mathrm{min}\)
- If \(\mathrm{TT}_{\text {in }}^{\prime}\) is a number of hours, the unit of \(\beta_{1}^{\prime}\) is \(1 /\) hour
- Both models are equivalent, but the estimated value of the coefficient will be different
\(\mathcal{S}_{\text {TRANSP-OR }} \quad \beta_{1} \mathrm{TT}_{i n}=\beta_{1}^{\prime} \mathrm{TT}_{i n}^{\prime} \Longrightarrow \frac{\mathrm{TT}_{i n}}{\mathrm{TT}_{\text {in }}^{\prime}}=\frac{\beta_{1}^{\prime}}{\beta_{1}}=60\)

\section*{Explanatory variables: alternatives attributes}

Generic and alternative specific parameters
\[
\begin{aligned}
V_{\text {auto }} & =\beta_{1} \mathrm{TT}_{\text {auto }} \\
V_{\text {bus }} & =\beta_{1} \mathrm{TT}_{\text {bus }}
\end{aligned}
\]
or
\[
\begin{aligned}
V_{\text {auto }} & =\beta_{1} \mathrm{TT}_{\text {auto }} \\
V_{\text {bus }} & =\beta_{2} \mathrm{TT}_{\text {bus }}
\end{aligned}
\]

Modeling assumption: a minute has/has not the same marginal utility whether it is incurred on the auto or bus mode

\section*{Explanatory variables: socio-eco. characteristics}
- Numerical and continuous
- \(\left(S_{n}\right)_{p} \in \mathbb{R}, \forall n, p\)
- Associated with a specific unit

\section*{Examples:}
- Annual income (in KCHF)
- Age (in years)

Warning: \(S_{n}\) do not depend on \(i\)

\section*{Explanatory variables: socio-eco. characteristics}

They cannot appear in all utility functions
\[
\left.\begin{array}{l}
V_{1}=\beta_{1} x_{11}+\beta_{2} \text { income } \\
V_{2}=\beta_{1} x_{21}+\beta_{2} \text { income } \\
V_{3}=\beta_{1} x_{31}+\beta_{2} \text { income }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
V_{1}^{\prime}=\beta_{1} x_{11} \\
V_{2}^{\prime}=\beta_{1} x_{21} \\
V_{3}^{\prime}=\beta_{1} x_{31}
\end{array}\right.
\]

In general: alternative specific characteristics
\[
\begin{aligned}
& V_{1}=\beta_{1} x_{11}+\beta_{2} \text { income }+\beta_{4} \text { age } \\
& V_{2}=\beta_{1} x_{21}+\beta_{3} \text { income }+\beta_{5} \text { age } \\
& V_{3}=\beta_{1} x_{31}
\end{aligned}
\]

\section*{Functional form: dealing with nonlinearities}
- Nonlinear transformations of the independent variables
- Discrete and qualitative variables
- Continuous variables
- Categories
- Splines
- Box-Cox
- Power series

\section*{Nonlinear transformations of the variables}
- Compare a trip of 5 min with a trip of 10 min
- Compare a trip of 120 min with a trip of 125 min

\section*{Nonlinear transformations of the variables}


\section*{Nonlinear transformations of the variables}

Instead of
\[
V_{i}=\beta \mathrm{time}_{i}
\]
one can use
\[
V_{i}=\beta \ln \left(\text { time }_{i}\right)
\]

It is still a linear-in-parameters form

\section*{Nonlinear transformations of the variables}

Another example: disposable income
\(\max\) (household income(\$/year) \(-s \times\) nbr of persons, 0 ) where \(s\) is the subsistence budget per person

Data can be preprocessed to account for nonlinearities
\[
V_{i n}=V\left(h\left(z_{i n}, S_{n}\right)\right)=\sum_{k} \beta_{k}\left(h\left(z_{i n}, S_{n}\right)\right)_{k}
\]
is linear-in-parameter, even with \(h\) nonlinear.

\section*{Discrete variables}
- Mainly used to capture qualitative attributes
- Level of comfort for the train
- Reliability of the bus
- Color
- Shape
- etc...
- or characteristics
- Sex
- Education
- Professional status
- etc.

\section*{Discrete variables}

Procedure for model specification:
- Identify all possible levels of the attribute: Very comfortable, Comfortable, Rather comfortable, Not comfortable.
- Select a base case: very comfortable
- Define numerical attributes
- Adopt a coding convention

\section*{Discrete variables}

Numerical attributes
Introduce a 0/1 attribute for all levels except the base case
- \(z_{c}\) for comfortable
- \(z_{\text {rc }}\) for rather comfortable
- \(z_{\text {nc }}\) for not comfortable

\section*{Discrete variables}

\section*{Coding convention}
\begin{tabular}{r|ccc} 
& \(z_{\mathrm{c}}\) & \(z_{\mathrm{rc}}\) & \(z_{\mathrm{nc}}\) \\
\hline \hline very comfortable & 0 & 0 & 0 \\
comfortable & 1 & 0 & 0 \\
rather comfortable & 0 & 1 & 0 \\
not comfortable & 0 & 0 & 1
\end{tabular}

If a qualitative attribute has \(n\) levels, we introduce \(n-1\) variables ( \(0 / 1\) ) in the model

\section*{Discrete variables}

Comparing two ways of coding:
\(\left.\begin{array}{r|cccc} & & z_{\mathrm{vc}} & z_{\mathrm{c}} & z_{\mathrm{rc}} \\ \hline \hline \text { very comfortable } & 1 & z_{\mathrm{nc}} \\ \text { comfortable } & 0 & 0 & 0 \\ \text { rather comfortable } & 0 & 0 & 1 & 0 \\ \text { not comfortable } & 0 & 0 & 0 & 1\end{array}\right]\)

Linear-in-parameter specification
Let's add a constant to all \(\beta\) 's

\section*{Discrete variables}
\[
\begin{array}{llllll}
V_{i n} & =\cdots & +\beta_{\mathrm{vc}} z_{i \mathrm{vc}} & +\beta_{\mathrm{c}} z_{i \mathrm{c}} & +\beta_{\mathrm{rc}} z_{i \mathrm{rc}} & +\beta_{\mathrm{nc}} z_{i \mathrm{nc}}
\end{array} \beta_{\mathrm{vc}}=0
\]
\[
\begin{aligned}
V_{i n} & =\cdots+\left(\beta_{\mathrm{vc}}+K\right) z_{i \mathrm{vc}}+\left(\beta_{\mathrm{c}}+K\right) z_{i \mathrm{c}}+\left(\beta_{\mathrm{rc}}+K\right) z_{i \mathrm{rc}}+\left(\beta_{\mathrm{nc}}+K\right) z_{i \mathrm{nc}} \\
& =\cdots+\beta_{\mathrm{vc}} z_{i \mathrm{vc}}+\beta_{\mathrm{c}} z_{i \mathrm{c}}+\beta_{\mathrm{rc}} z_{i \mathrm{rc}}+\beta_{\mathrm{nc}} z_{i \mathrm{ic}}+K\left(z_{i \mathrm{vc}}+z_{i \mathrm{c}}+z_{i \mathrm{rc}}+z_{i \mathrm{nc}}\right) \\
& =\cdots+\beta_{\mathrm{vc}} z_{i \mathrm{vc}}+\beta_{\mathrm{c}} z_{i \mathrm{c}}+\beta_{\mathrm{rc}} z_{i \mathrm{rc}}+\beta_{\mathrm{nc}} z_{i \mathrm{ic}}+K
\end{aligned}
\]
- \(K=-\beta_{\mathrm{vc}}\) : very comfortable as the base case
- \(K=-\beta_{\mathrm{c}}\) : comfortable as the base case
- \(K=-\beta_{\mathrm{rc}}\) : rather comfortable as the base case
- \(K=-\beta_{\text {nc }}\) : not comfortable as the base case

\section*{Discrete variables}

Example of estimation with Biogeme:
\begin{tabular}{rrr} 
& Model 1 & Model 2 \\
\hline ASC & 0.574 & 0.574 \\
\hline BETA_VC & 0.000 & 0.918 \\
\hline BETA_C & -0.919 & 0.000 \\
\hline BETA_RC & -1.015 & -0.096 \\
\hline BETA_NC & -2.128 & -1.210 \\
\hline
\end{tabular}

\section*{Continuous variables: categories}
- Assumption: sensitivity to travel time varies with travel time
- Using \(\beta\) TT is not appropriate anymore
- Categories are defined: travel time in minutes
[0-90[, [90-180[, [180-270[, [270- [
- Solutions:
- Categories with constants (inferior solution)
- Piecewise linear specification (spline)

\section*{Continuous variables: categories}

\section*{Categories with constants}
- Same specification as for discrete variables
\[
V_{i}=\beta_{T 1} x_{T 1}+\beta_{T 2} x_{T 2}+\beta_{T 3} x_{T 3}+\beta_{T 4} x_{T 4}+\ldots
\]
- with
- \(x_{T 1}=1\) if \(T T_{i} \in[0-90[, 0\) otherwise
- \(x_{T 2}=1\) if \(T T_{i} \in\) [90-180[, 0 otherwise
- \(x_{T 3}=1\) if \(T T_{i} \in\) [180-270[, 0 otherwise
- \(x_{T 4}=1\) if \(T T_{i} \in[270-[, 0\) otherwise
- One \(\beta\) must be normalized to 0 .

\section*{Continuous variables: categories}


\section*{Continuous variables: categories}

\section*{Drawbacks}
- No sensitivity to travel time within the intervals
- Discontinuous utility function (jumps)
- Need for many small intervals
- Results may vary significantly with the definition of the intervals Appropriate when
- Categories have been used in the survey (income, age)
- Definition of categories is natural (weekday)

\section*{Continuous variables: categories}

Piecewise linear specification (spline)
- Capture the sensitivity within the intervals
- Enforce continuity of the utility function

\section*{Piecewise linear specification}
- Specification:
\[
V_{i}=\beta_{T 1} x_{T 1}+\beta_{T 2} x_{T 2}+\beta_{T 3} x_{T 3}+\beta_{T 4} x_{T 4}+\ldots
\]
where
\[
\begin{aligned}
& x_{T 1}= \begin{cases}t & \text { if } t<90 \\
90 & \text { otherwise }\end{cases} \\
& x_{T 3}= \begin{cases}0 & \text { if } t<180 \\
t-180 & \text { if } 180 \leq t<270 \\
90 & \text { otherwise }\end{cases} \\
& x_{T 2}= \begin{cases}0 & \text { if } t<90 \\
t-90 & \text { if } 90 \leq t<180 \\
90 & \text { otherwise }\end{cases} \\
& x_{T 4}= \begin{cases}0 & \text { if } t<270 \\
t-270 & \text { otherwise }\end{cases}
\end{aligned}
\]

\section*{Piecewise linear specification}

Note: coding in Biogeme for interval [a-b[
\[
\begin{aligned}
& x_{T i}= \begin{cases}0 & \text { if } t<a \\
t-a & \text { if } a \leq t<a+b \quad x_{T i}=\max (0, \min (t-a, b)) \\
b & \text { otherwise }\end{cases} \\
& x_{T 1}=\min (t, 90) \\
& x_{T 2}=\max (0, \min (t-90,90)) \\
& x_{T 3}=\max (0, \min (t-180,90)) \\
& x_{T 4}=\max (0, t-270) \\
& \text { TRAIN_TT1 }=\min \left(T R A I N \_T T, 90\right) \\
& \text { TRAIN_TT2 }=\max (0, \min (\text { TRAIN_TT }-90,90)) \\
& \text { TRAIN_TT3 }=\max \left(0, \min \left(T R A I N \_T T-180,90\right)\right) \\
& \text { TRAIN_TT4 }=\max (0, \text { TRAIN_TT }-270) \\
& \text { ZTRANSP-OR }
\end{aligned}
\]

\section*{Piecewise linear specification}

\section*{Examples:}
\begin{tabular}{r|rrrr}
t & TT1 & TT 2 & TT 3 & TT 4 \\
\hline 40 & 40 & 0 & 0 & 0 \\
100 & 90 & 10 & 0 & 0 \\
200 & 90 & 90 & 20 & 0 \\
300 & 90 & 90 & 90 & 30
\end{tabular}

\section*{Piecewise linear specification}


\section*{Box-Cox transforms}

Box and Cox, J. of the Royal Statistical Society (1964)
\[
V_{i}=\beta x_{i}(\lambda)+\cdots
\]
where
\[
x_{i}(\lambda)= \begin{cases}\frac{x_{i}^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ \ln x_{i} & \text { if } \lambda=0 .\end{cases}
\]
where \(x_{i}>0\).

\section*{Box-Cox transforms}

If \(x_{i} \leq 0\), let \(\alpha\) such that \(x_{i}+\alpha>0\) and
\[
x_{i}(\lambda, \alpha)= \begin{cases}\frac{\left(x_{i}+\alpha\right)^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ \ln \left(x_{i}+\alpha\right) & \text { if } \lambda=0\end{cases}
\]

\section*{Box-Cox transforms}


TRANSP-OR

\section*{Box-Cox transforms}

Other power transforms are possible:
- Manly, Biometrics (1971)
\[
x_{i}(\lambda)= \begin{cases}\frac{e^{x_{i} \lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ x_{i} & \text { if } \lambda=0 .\end{cases}
\]
- John and Draper, Applied Statistics (1980)
\[
x_{i}(\lambda)= \begin{cases}\operatorname{sign}\left(x_{i}\right) \frac{\left(\left|x_{i}\right|+1\right)^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0 \\ \operatorname{sign}\left(x_{i}\right) \ln \left(\left|x_{i}\right|+1\right) & \text { if } \lambda=0 .\end{cases}
\]

\section*{Box-Cox transforms}

Other power transforms are possible:
- Yeo and Johnson, Biometrika (2000)
\[
x_{i}(\lambda)= \begin{cases}\frac{\left(x_{i}+1\right)^{\lambda}-1}{\lambda} & \text { if } \lambda \neq 0, x_{i} \geq 0 \\ \ln \left(x_{i}+1\right) & \text { if } \lambda=0, x_{i} \geq 0 \\ \frac{\left(1-x_{i}\right)^{2-\lambda}-1}{\lambda-2} & \text { if } \lambda \neq 2, x_{i}<0 \\ -\ln \left(1-x_{i}\right) & \text { if } \lambda=2, x_{i}<0\end{cases}
\]

\section*{Power series}
\[
V_{i}=\beta_{1} T+\beta_{2} T^{2}+\beta_{3} T^{3}+\ldots
\]
- In practice, these terms can be very correlated
- Difficult to interpret
- Risk of over fitting

\section*{Interactions}
- All individuals in a population are not alike
- Socio-economic characteristics define segments in the population
- How to capture heterogeneity?
- Interactions of attributes and characteristics
- Discrete segmentation
- Continuous segmentation

\section*{Interactions of attributes and characteristics}

Combination of attributes:
- cost / income
- fare / disposable income
- out-of-vehicle time / distance

WARNING: correlation of attributes may produce degeneracy in the model

Example: speed and travel time if distance is constant

\section*{Interactions: discrete segmentation}
- The population is divided into a finite number of segments
- Each individual belongs to exactly one segment
- Example: gender (M,F) and house location (metro, suburb, perimeter areas)
- 6 segments
\[
\begin{aligned}
& \beta_{M, m} T T_{M, m}+\beta_{M, s} T T_{M, s}+\beta_{M, p} T T_{M, p}+ \\
& \beta_{F, m} T T_{F, m}+\beta_{F, s} T T_{F, s}+\beta_{F, p} T T_{F, p}+
\end{aligned}
\]
- \(T T_{i}=T T\) if indiv. belongs to segment \(i\), and 0 otherwise

\section*{Interactions: continuous segmentation}
- Taste parameter varies with a continuous socio-economic characteristics
- Example: the cost parameter varies with income
\[
\beta_{\text {cost }}=\hat{\beta}_{\text {cost }}\left(\frac{\mathrm{inc}}{\mathrm{inc}_{\text {ref }}}\right)^{\lambda} \text { with } \lambda=\frac{\partial \beta_{\text {cost }}}{\partial \mathrm{inc}} \frac{\text { inc }}{\beta_{\text {cost }}}
\]
- Warning: \(\lambda\) must be estimated and utility is not linear-in-parameters anymore
- Reference value is arbitrary
- Several characteristics can be combined:
\[
\beta_{\text {cost }}=\hat{\beta}_{\text {cost }}\left(\frac{\text { inc }}{\text { inc }_{\text {ref }}}\right)^{\lambda_{1}}\left(\frac{\text { age }}{\text { age }_{\text {ref }}}\right)^{\lambda_{2}}
\]

\section*{Heteroscedasticity}
- Logit is homoscedastic
- \(\varepsilon_{i n}\) i.i.d. across both \(i\) and \(n\).
- Assume there are two different groups such that
\[
\begin{aligned}
& U_{i n_{1}}=V_{i n_{1}}+\varepsilon_{i n_{1}} \\
& U_{i n_{2}}=V_{i n_{2}}+\varepsilon_{i n_{2}}
\end{aligned}
\]
and \(\operatorname{Var}\left(\varepsilon_{i n_{2}}\right)=\alpha^{2} \operatorname{Var}\left(\varepsilon_{i n_{1}}\right)\)
- Then we prefer the model
\[
\begin{aligned}
\alpha U_{i n_{1}} & =\alpha V_{i n_{1}}+\alpha \varepsilon_{i n_{1}} \\
U_{i n_{2}} & =\alpha V_{i n_{1}}+\varepsilon_{i n_{1}}^{\prime} \\
i n_{2} & +\varepsilon_{i n_{2}}
\end{aligned}=V_{i n_{2}}+\varepsilon_{i n_{2}}^{\prime}
\]
- where \(\varepsilon_{i n_{1}}^{\prime}\) and \(\varepsilon_{i n_{2}}^{\prime}\) are i.i.d.

\section*{Heteroscedasticity}
- If \(V_{i n_{1}}\) is linear-in-parameters, that is
\[
V_{i n_{1}}=\sum_{j} \beta_{j} x_{j i n_{1}}
\]
then
\[
\alpha V_{i n_{1}}=\sum_{j} \alpha \beta_{j} x_{j i n_{1}}
\]
is nonlinear.

\section*{A case study}
- Choice of residential telephone services
- Household survey conducted in Pennsylvania, USA, 1984
- Revealed preferences
- 434 observations

\section*{A case study}

Telephone services and availability
\begin{tabular}{cccc}
\hline & metro, suburban & & \\
& \& some & other & \\
& perimeter & perimeter & non-metro \\
& areas & areas & areas \\
\hline \hline Budget Measured & yes & yes & yes \\
Standard Measured & yes & yes & yes \\
Extended Area Flat & yes & no & yes \\
Metro Area Flat & yes & yes & no \\
\hline
\end{tabular}

\section*{A case study}

Universal choice set
\[
\mathcal{C}=\{\mathrm{BM}, \mathrm{SM}, \mathrm{LF}, \mathrm{EF}, \mathrm{MF}\}
\]

Specific choice sets
- Metro, suburban \& some perimeter areas: \{BM,SM,LF,MF\}
- Other perimeter areas: \(\mathcal{C}\)
- Non-metro areas: \{BM,SM,LF\}

\section*{A case study}

Specification table
\begin{tabular}{l|lllll} 
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) \\
\hline BM & 0 & 0 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{BM}))\) \\
SM & 1 & 0 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{SM}))\) \\
LF & 0 & 1 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{LF}))\) \\
EF & 0 & 0 & 1 & 0 & \(\ln (\operatorname{cost}(\mathrm{EF}))\) \\
MF & 0 & 0 & 0 & 1 & \(\ln (\operatorname{cost}(\mathrm{MF}))\)
\end{tabular}

\section*{A case study}
\[
\begin{aligned}
V_{\mathrm{BM}} & =\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{BM}}\right) \\
V_{\mathrm{SM}} & =\beta_{1}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{SM}}\right) \\
V_{\mathrm{LF}} & =\beta_{2}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{LF}}\right) \\
V_{\mathrm{EF}} & =\beta_{3}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{EF}}\right) \\
V_{\mathrm{MF}} & =\beta_{4}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{MF}}\right)
\end{aligned}
\]

\section*{A case study}

Specification table II
\begin{tabular}{l|lllllll} 
& \(\beta_{1}\) & \(\beta_{2}\) & \(\beta_{3}\) & \(\beta_{4}\) & \(\beta_{5}\) & \(\beta_{6}\) & \(\beta_{7}\) \\
\hline BM & 0 & 0 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{BM}))\) & users & 0 \\
SM & 1 & 0 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{SM}))\) & users & 0 \\
LF & 0 & 1 & 0 & 0 & \(\ln (\operatorname{cost}(\mathrm{LF}))\) & 0 & 1 if metro/suburb \\
EF & 0 & 0 & 1 & 0 & \(\ln (\operatorname{cost}(\mathrm{EF}))\) & 0 & 0 \\
MF & 0 & 0 & 0 & 1 & \(\ln (\operatorname{cost}(\mathrm{MF}))\) & 0 & 0
\end{tabular}

\section*{A case study}
\[
\begin{aligned}
V_{\mathrm{BM}} & =\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{BM}}\right)+\beta_{6} \text { users } \\
V_{\mathrm{SM}} & =\beta_{1}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{SM}}\right)+\beta_{6} \text { users } \\
V_{\mathrm{LF}} & =\beta_{2}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{LF}}\right) \\
V_{\mathrm{EF}} & =\beta_{3}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{EF}}\right) \\
V_{\mathrm{MF}} & =\beta_{4}+\beta_{5} \ln \left(\operatorname{cost}_{\mathrm{MF}}\right)
\end{aligned}
\]

\section*{Maximum likelihood estimation}

\section*{Logit Model:}
\[
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
\]

Log-likelihood of a sample:
\[
\mathcal{L}\left(\beta_{1}, \ldots, \beta_{K}\right)=\sum_{n=1}^{N}\left(\sum_{j=1}^{J} y_{j n} \ln P_{n}\left(j \mid \mathcal{C}_{n}\right)\right)
\]
where \(y_{j n}=1\) if ind. \(n\) has chosen alt. \(j, 0\) otherwise

\section*{Maximum likelihood estimation}
\[
\begin{aligned}
\ln P_{n}\left(i \mid \mathcal{C}_{n}\right) & =\ln \frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}} \\
& =V_{i n}-\ln \left(\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}\right)
\end{aligned}
\]

Log-likelihood of a sample:
\[
\mathcal{L}\left(\beta_{1}, \ldots, \beta_{K}\right)=\sum_{n=1}^{N} \sum_{i=1}^{J} y_{i n}\left(V_{i n}-\ln \sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}\right)
\]

\section*{Maximum likelihood estimation}

The maximum likelihood estimation problem:
\[
\max _{\beta \in \mathbb{R}^{K}} \mathcal{L}(\beta)
\]

Maximization of a concave function with \(K\) variables Nonlinear programming

\section*{Maximum likelihood estimation}

Numerical issue:
\[
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
\]

Largest value that can be stored in a computer \(\approx 10^{308}\), that is
\[
e^{709.783}
\]

It is equivalent to compute
\[
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}-V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}-V_{i n}}}=\frac{1}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}-V_{i n}}}
\]

\section*{Simple models}

\section*{Null model}
\[
\begin{gathered}
U_{i}=\varepsilon_{i} \forall i \\
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}=\frac{e^{0}}{\sum_{j \in \mathcal{C}_{n}} e^{0}}=\frac{1}{\# \mathcal{C}_{n}} \\
\mathcal{L}=\sum_{n} \ln \frac{1}{\# \mathcal{C}_{n}}=-\sum_{n} \ln \left(\# \mathcal{C}_{n}\right)
\end{gathered}
\]

\section*{Simple models}

Constants only [Assume \(\mathcal{C}_{n}=\mathcal{C}, \forall n\) ]
\[
U_{i}=c_{i}+\varepsilon_{i} \quad \forall i
\]

In the sample of size \(n\), there are \(n_{i}\) persons choosing alt. \(i\).
\[
\ln P(i)=c_{i}-\ln \left(\sum_{j} e^{c_{j}}\right)
\]

If \(\mathcal{C}_{n}\) is the same for all people choosing \(i\), the log-likelihood for this part of the sample is
\[
\mathcal{L}_{i}=n_{i} c_{i}-n_{i} \ln \left(\sum_{j} e^{c_{j}}\right)
\]

\section*{Simple models}

\section*{Constants only}

The total log-likelihood is
\[
\mathcal{L}=\sum_{j} n_{j} c_{j}-n \ln \left(\sum_{j} e^{c_{j}}\right)
\]

At the maximum, the derivatives must be zero
\[
\frac{\partial \mathcal{L}}{\partial c_{1}}=n_{1}-n \frac{e^{c_{1}}}{\sum_{j} e^{c_{j}}}=n_{1}-n P(1)=0 .
\]

\section*{Simple models}

Constants only
Therefore,
\[
P(1)=\frac{n_{1}}{n}
\]

If all alternatives are always available, a model with only Alternative Specific Constants reproduces exactly the market shares in the sample

\section*{Back to the case study}
\begin{tabular}{ccc|ccc} 
Alt. & \(n_{i}\) & \(n_{i} / n\) & \(c_{i}\) & \(e^{c_{i}}\) & \(\mathrm{P}(\mathrm{i})\) \\
\hline \hline BM & 73 & 0.168 & 0.247 & 1.281 & 0.168 \\
SM & 123 & 0.283 & 0.769 & 2.158 & 0.283 \\
LF & 178 & 0.410 & 1.139 & 3.123 & 0.410 \\
EF & 3 & 0.007 & -2.944 & 0.053 & 0.007 \\
MF & 57 & 0.131 & 0.000 & 1.000 & 0.131 \\
\hline \multicolumn{5}{c}{ Null-model: \(\mathcal{L}=-434 \ln (5)=-698.496\)}
\end{tabular}

Warning: these results have been obtained assuming that all alternatives are always available```

