Binary choice

\author{
Michel Bierlaire
 ```
michel.bierlaire@epfl.ch

```
}

Transport and Mobility Laboratory

\section*{Example}

Ben-Akiva \& Lerman (1985) Discrete Choice Analysis: Theory and Applications to Travel Demand, MIT Press (p.88)

Choice between Auto and Transit

\section*{Example}

\section*{Data :}
\begin{tabular}{rrrr|rrrr} 
& Time & Time & & & Time & Time & \\
\(\#\) & auto & transit & Choice & \(\#\) & \begin{tabular}{r} 
auto \\
transit
\end{tabular} & Choice \\
\hline 1 & 52.9 & 4.4 & T & 11 & 99.1 & 8.4 & T \\
2 & 4.1 & 28.5 & T & 12 & 18.5 & 84.0 & C \\
3 & 4.1 & 86.9 & C & 13 & 82.0 & 38.0 & C \\
4 & 56.2 & 31.6 & T & 14 & 8.6 & 1.6 & T \\
5 & 51.8 & 20.2 & T & 15 & 22.5 & 74.1 & C \\
6 & 0.2 & 91.2 & C & 16 & 51.4 & 83.8 & C \\
7 & 27.6 & 79.7 & C & 17 & 81.0 & 19.2 & T \\
8 & 89.9 & 2.2 & T & 18 & 51.0 & 85.0 & C \\
9 & 41.5 & 24.5 & T & 19 & 62.2 & 90.1 & C \\
10 & 95.0 & 43.5 & T & 20 & 95.1 & 22.2 & T \\
& & & & 21 & 41.6 & 91.5 & C
\end{tabular}

\section*{Binary choice model}
\[
\begin{aligned}
U_{C} & =\beta_{1} T_{C}+\varepsilon_{C} \\
U_{T} & =\beta_{1} T_{T}+\varepsilon_{T}
\end{aligned}
\]
where \(T_{C}\) is the travel time with car \((\mathrm{min})\) and \(T_{T}\) the travel time with transit (min).
\[
\begin{aligned}
P(C \mid\{C, T\}) & =P\left(U_{C} \geq U_{T}\right) \\
& =P\left(\beta_{1} T_{C}+\varepsilon_{C} \geq \beta_{1} T_{T}+\varepsilon_{T}\right) \\
& =P\left(\beta_{1} T_{C}-\beta_{1} T_{T} \geq \varepsilon_{T}-\varepsilon_{C}\right) \\
& =P\left(\varepsilon \leq \beta_{1}\left(T_{C}-T_{T}\right)\right)
\end{aligned}
\]
where \(\varepsilon=\varepsilon_{T}-\varepsilon_{C}\).

\section*{Error term}

Three questions about the random variables \(\varepsilon_{T}\) and \(\varepsilon_{C}\) :
1. What's their mean?
2. What's their variance?
3. What's their distribution?

\section*{Error term}

The mean
\[
P(C \mid\{C, T\})=P\left(\varepsilon \leq \beta_{1}\left(T_{C}-T_{T}\right)\right)
\]

Assume that \(E[\varepsilon]=\beta_{0}\) and define
\[
\varepsilon^{\prime}=\varepsilon-\beta_{0}
\]

Then, \(E\left[\varepsilon^{\prime}\right]=0\) and
\[
\begin{aligned}
P(C \mid\{C, T\}) & =P\left(\varepsilon^{\prime} \leq \beta_{1}\left(T_{C}-T_{T}\right)-\beta_{0}\right) \\
& =P\left(\varepsilon^{\prime} \leq\left(\beta_{1} T_{C}-\beta_{0}\right)-\beta_{1} T_{T}\right) \\
& =P\left(\varepsilon^{\prime} \leq \beta_{1} T_{C}-\left(\beta_{1} T_{T}+\beta_{0}\right)\right)
\end{aligned}
\]

\section*{Error term}

\section*{The mean}

The mean of \(\varepsilon\) can be included as a parameter of the deterministic part.
Only the mean of the difference of the error terms is meaningful. Alternative Specific Constant:
\[
\begin{array}{llll}
U_{C} & =\beta_{1} T_{C} & +\varepsilon_{C} \\
U_{T} & =\beta_{1} T_{T}+\beta_{0} & +\varepsilon_{T}
\end{array} \text { or } \begin{aligned}
& U_{C}=\beta_{1} T_{C}-\beta_{0} \\
& U_{T}=\varepsilon_{C} \\
& U_{1} T_{T}
\end{aligned}+\varepsilon_{T}
\]

\section*{Error term}

\section*{The mean}

Note that adding the same constant to all utility functions does not affect the probability model
\[
P\left(U_{C} \geq U_{T}\right)=P\left(U_{C}+K \geq U_{T}+K\right) \quad \forall K \in \mathbb{R}^{n}
\]

If the deterministic part of the utility functions contains an Alternative Specific Constant (ASC) for all alternatives but one, the mean of the error terms can be assumed to be zero without loss of generality.

\section*{Error term}

The variance
\[
P\left(U_{C} \geq U_{T}\right)=P\left(\alpha U_{C} \geq \alpha U_{T}\right) \quad \forall \alpha>0
\]

Multiplying the utility by any strictly positive number \(\alpha\) does not affect the probability. Moreover,
\[
\begin{aligned}
\operatorname{Var}\left(\alpha U_{C}\right) & =\alpha^{2} \operatorname{Var}\left(U_{C}\right) \\
\operatorname{Var}\left(\alpha U_{T}\right) & =\alpha^{2} \operatorname{Var}\left(U_{T}\right)
\end{aligned}
\]

Select \(\alpha\) such that \(\operatorname{Var}\left(\alpha U_{i}\right)=a\) :
\[
\alpha=\sqrt{\frac{a}{\operatorname{Var}\left(U_{i}\right)}}
\]

\section*{Error term}

\section*{The variance}

> Imposing an arbitrary variance amounts to imposing an arbitrary scale to the utility

\section*{Error term}

The distribution
Assumption 1: \(\varepsilon_{T}\) and \(\varepsilon_{C}\) are the sum of many r.v. capturing unobservable attributes (e.g. mood, experience), measurement and specification errors.
Central-limit theorem: the sum of many i.i.d. random variables approximately follows a normal distribution
\[
\varepsilon_{i n} \sim N(0,1)
\]

\section*{Error term}

The distribution
Normal distribution:
\[
f(t)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}}
\]

If \(\varepsilon \sim N(0,1)\), then
\[
P(c \geq \varepsilon)=F(c)=\int_{-\infty}^{c} f(t) d t
\]


\section*{Error term}

The distribution
From the properties of the normal distribution, we have
\[
\begin{aligned}
\varepsilon_{C} & \sim N(0,1) \\
\varepsilon_{T} & \sim N(0,1) \\
\varepsilon=\varepsilon_{T}-\varepsilon_{C} & \sim N(0,2)
\end{aligned}
\]

As the variance is arbitrary, we may also assume
\[
\begin{aligned}
\varepsilon_{C} & \sim N(0,0.5) \\
\varepsilon_{T} & \sim N(0,0.5) \\
\varepsilon=\varepsilon_{T}-\varepsilon_{C} & \sim N(0,1)
\end{aligned}
\]

\section*{Error term}

The distribution
\[
\begin{aligned}
P(C \mid\{C, T\}) & =P\left(\varepsilon \leq V_{C}-V_{T}\right) \\
& =P\left(\varepsilon \leq \beta_{1}\left(T_{C}-T_{T}\right)-\beta_{0}\right) \\
& =F\left(\beta_{1}\left(T_{C}-T_{T}\right)-\beta_{0}\right)
\end{aligned}
\]
\[
P(C \mid\{C, T\})=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\beta_{1}\left(T_{C}-T_{T}\right)-\beta_{0}} e^{-\frac{1}{2} t^{2}} d t
\]

Not a closed form expression

\section*{Error term}

\section*{The distribution}

If the error terms are assumed to follow a normal distribution, the corresponding model is called

Probability Unit Model or Probit Model.

\section*{Error term}

The distribution
Assumption 2: \(\varepsilon_{T}\) and \(\varepsilon_{C}\) are the maximum of many r.v. capturing unobservable attributes (e.g. mood, experience), measurement and specification errors.
Gumbel theorem: the maximum of many i.i.d. random variables approximately follows an Extreme Value distribution.
\[
\varepsilon_{C} \sim \operatorname{EV}(0, \mu)
\]

\section*{Error term}
\(\mathrm{EV}(\eta, \mu)\), with \(\mu>0\) :
\[
f(t)=\mu e^{-\mu(t-\eta)} e^{-e^{-\mu(t-\eta)}}
\]

If \(\varepsilon \sim \mathrm{EV}(\eta, \mu)\), then
The distribution
\[
\begin{aligned}
P(c \geq \varepsilon)=F(c) & =\int_{-\infty}^{c} f(t) d t \\
& =e^{-e^{-\mu(c-\eta)}}
\end{aligned}
\]

\section*{Error term}


\section*{Error term}

If
\[
\varepsilon \sim \operatorname{EV}(\eta, \mu)
\]
then
\[
E[\varepsilon]=\eta+\frac{\gamma}{\mu} \text { and } \operatorname{Var}[\varepsilon]=\frac{\pi^{2}}{6 \mu^{2}}
\]
where \(\gamma\) is Euler's constant
\[
\begin{aligned}
\gamma & =\lim _{k \rightarrow \infty} \sum_{i=1}^{k} \frac{1}{i}-\ln k \\
& =-\int_{0}^{\infty} e^{-x} \ln x d x \\
& \approx 0.5772
\end{aligned}
\]

\section*{Error term}

The distribution
\[
P(C \mid\{C, T\})=P\left(\varepsilon \leq V_{C}-V_{T}\right)=P\left(\varepsilon \leq \beta_{1}\left(T_{C}-T_{T}\right)-\beta_{0}\right)
\]
where \(\varepsilon=\varepsilon_{T}-\varepsilon_{C}\).
\[
\begin{aligned}
\varepsilon_{C} & \sim \operatorname{EV}(0, \mu) \\
\varepsilon_{T} & \sim \operatorname{EV}(0, \mu) \\
\varepsilon & \sim \operatorname{Logistic}(0, \mu) \\
& \text { Logit Model }
\end{aligned}
\]

\section*{Error term}

The distribution
For the Logistic \((0, \mu)\), we have
\[
\begin{aligned}
P(c \geq \varepsilon)= & F(c)=\frac{1}{1+e^{-\mu c}} \\
P(C \mid\{C, T\}) & =P\left(\varepsilon \leq V_{C}-V_{T}\right) \\
& =F\left(V_{C}-V_{T}\right) \\
& =\frac{1}{1+e^{-\mu\left(V_{C}-V_{T}\right)}}
\end{aligned}
\]

\section*{Error term}

The distribution
\[
P(C \mid\{C, T\})=\frac{1}{1+e^{-\mu\left(V_{C}-V_{T}\right)}}
\]
or, equivalently,
\[
P(C \mid\{C, T\})=\frac{e^{\mu V_{C}}}{e^{\mu V_{C}}+e^{\mu V_{T}}}
\]

Binary Logistic Unit Model or Binary Logit Model Normalize \(\mu=1\)

\section*{Back to the example}

Let's assume that \(\beta_{0}=0.5\) and \(\beta_{1}=-0.1\)
Let's consider the first observation:
- \(T_{C}=52.9\)
- \(T_{T}=4.4\)
- Choice = transit

What's the probability given by the model that this individual indeed chooses transit?
\[
\begin{aligned}
V_{C} & =\beta_{1} T_{C}
\end{aligned}=-5.29 .
\]

\section*{Back to the example}
\[
\begin{gathered}
P(\text { transit })=\frac{e^{V_{T}}}{e^{V_{T}}+e^{V_{C}}} \\
P(\text { transit })=\frac{e^{0.06}}{e^{0.06}+e^{-5.29}} \cong 1
\end{gathered}
\]

The model almost perfectly predicts this observation

\section*{Back to the example}

Let's assume again that \(\beta_{0}=0.5\) and \(\beta_{1}=-0.1\)
Let's consider the second observation:
- \(T_{C}=4.1\)
- \(T_{T}=28.5\)
- Choice = transit

What's the probability given by the model that this individual indeed chooses transit?
\[
\begin{aligned}
& V_{C}=\beta_{1} T_{C}=-0.41 \\
& V_{T}=\beta_{1} T_{T}+\beta_{0}=-2.35
\end{aligned}
\]

\section*{Back to the example}
\[
\begin{gathered}
P(\text { transit })=\frac{e^{V_{T}}}{e^{V_{T}}+e^{V_{C}}} \\
P(\text { transit })=\frac{e^{-2.35}}{e^{-2.35}+e^{-0.41}} \cong 0.13
\end{gathered}
\]

The model does not correctly predict this observation

\section*{Back to the example}

The probability that the model reproduces both observations is
\[
P_{1}(\text { transit }) P_{2}(\text { transit })=0.13
\]

The probability that the model reproduces all observations is
\[
P_{1}(\text { transit }) P_{2} \text { (transit) } \ldots P_{21} \text { (auto) }=4.6210^{-4}
\]

In general
\[
\mathcal{L}^{*}=\prod_{n}\left(P_{n}(\text { auto })^{y_{\text {auto }, n}} P_{n}(\text { transit })^{y_{\text {transit }, n}}\right)
\]
where \(y_{j, n}\) is 1 if individual \(n\) has chosen alternative \(j, 0\) otherwise

\section*{Back to the example}
\(\mathcal{L}^{*}\) is called the likelihood of the sample for a given model.
It is a probability.
We report this value for some values of \(\beta_{0}\) and \(\beta_{1}\)
\[

\]

\section*{Back to the example}


\section*{Back to the example}


\section*{Maximum likelihood estimation}
\[
\max _{\beta} \prod_{n}\left(P_{n}(\text { auto })^{y \text { auto }, n} P_{n}(\text { transit })^{y \text { transit }, n}\right)
\]

Alternatively, we prefer to maximize the log-likelihood
\[
\begin{gathered}
\max _{\beta} \ln \prod_{n}\left(P_{n}(\text { auto })^{y_{\text {auto }, n}} P_{n}(\text { transit })^{y_{\text {transit }, n}}\right) \\
\max _{\beta} \sum_{n} \ln \left(y_{\text {auto }, n} P_{n}(\text { auto })+y_{\text {transit }, n} P_{n}(\text { transit })\right)
\end{gathered}
\]

\section*{Maximum likelihood estimation}


TRANSP-DR

\section*{Maximum likelihood estimation}


TRANSP-OR

\section*{Maximum likelihood estimation}

In general, the likelihood of a sample composed of \(N\) observations is
\[
\mathcal{L}^{*}\left(\beta_{1}, \ldots, \beta_{K}\right)=\prod_{n=1}^{N} P_{n}(1)^{y_{1 n}} P_{n}(2)^{y_{2 n}}
\]
where \(y_{1 n}\) is 1 if individual \(n\) has chosen alternative 1 , and 0 otherwise. We also have
\[
P_{n}(2)=1-P_{n}(1) \text { and } y_{2 n}=1-y_{1 n}
\]

\section*{Maximum likelihood estimation}

The log-likelihood is more convenient:
\[
\mathcal{L}\left(\beta_{1}, \ldots, \beta_{K}\right)=\sum_{n=1}^{N}\left(y_{1 n} \log P_{n}(1)+y_{2 n} \log P_{n}(2)\right)
\]

Problem to solve
\[
\max _{\beta \in \mathbb{R}^{K}} \mathcal{L}(\beta)
\]

\section*{Nonlinear programming}
- Iterative methods
- Designed to identify a local maximum
- When the function is concave, a local maximum is also a global maximum
- For binary logit, the log-likelihood is concave
- Use the derivatives of the objective function

Example: package CFSQP used in BIOGEME

\section*{Nonlinear programming}


TRANSP-OR

\section*{Nonlinear programming}


TRANSP-OR

\section*{Nonlinear programming}


TRANSP-OR

\section*{Nonlinear programming}


\section*{Nonlinear programming}


\section*{Nonlinear programming}


\section*{Nonlinear programming}


\section*{Nonlinear programming}


\section*{Nonlinear programming}

Things to be aware of
- Iterative methods terminate when a given stopping criterion is verified, based on the fact that, if \(\beta^{*}\) is the optimum,
\[
\nabla \mathcal{L}\left(\beta^{*}\right)=0
\]

Stopping criteria usually vary across optimization packages, which may produce slightly different solutions
They are usually using a parameter defining the required precision

\section*{Nonlinear programming}

Tests with CFSQP package within BIOGEME
\begin{tabular}{rcccr} 
Prec. & \(\beta_{0}^{*}\) & \(\beta_{1}^{*}\) & \(\mathcal{L}^{*}\left(\beta^{*}\right)\) & \(\left\|\nabla \mathcal{L}^{*}\left(\beta^{*}\right)\right\|\) \\
\hline 1.0 & \(+0.0000 \mathrm{e}+00\) & \(+1.4901 \mathrm{e}-08\) & -14.56 & 456.05 \\
\(1.0 \mathrm{e}-01\) & \(+2.5810 \mathrm{e}-01\) & \(-5.5361 \mathrm{e}-02\) & -6.172 & 4.9646 \\
\(1.0 \mathrm{e}-02\) & \(+2.4274 \mathrm{e}-01\) & \(-5.2330 \mathrm{e}-02\) & -6.167 & 1.9711 \\
\(1.0 \mathrm{e}-03\) & \(+2.3732 \mathrm{e}-01\) & \(-5.3146 \mathrm{e}-02\) & -6.166 & 0.089982 \\
\(1.0 \mathrm{e}-04\) & \(+2.3758 \mathrm{e}-01\) & \(-5.3110 \mathrm{e}-02\) & -6.166 & 0.0015384 \\
\(1.0 \mathrm{e}-05\) & \(+2.3757 \mathrm{e}-01\) & \(-5.3110 \mathrm{e}-02\) & -6.166 & 0.0015384
\end{tabular}

\section*{Nonlinear programming}

Things to be aware of
- Most methods are sensitive to the conditioning of the problem.

A well-conditioned problem is a problem for which all parameters have almost the same magnitude

\section*{Nonlinear programming}


Time in min.


Time in sec.

\section*{Nonlinear programming}


Time in min.


Time in sec.

\section*{Nonlinear programming}

Things to be aware of
- Convergence may be very slow or even fail if the model is singular

A model is singular when some of its parameters are not identifiable

Example: all travel times are equal.

\section*{Nonlinear programming}


\section*{Output of the estimation}
\[
\max _{\beta \in \mathbb{R}^{K}} \mathcal{L}(\beta)
\]

Solution: \(\beta^{*}\) and \(\mathcal{L}\left(\beta^{*}\right)\) Case study:
- \(\beta_{0}^{*}=0.2376\)
- \(\beta_{1}^{*}=-0.0531\)
- \(\mathcal{L}\left(\beta_{0}^{*}, \beta_{1}^{*}\right)=-6.166\)

\section*{Output of the estimation}

Information about the quality of the estimators.
Let
\[
\nabla^{2} \mathcal{L}\left(\beta^{*}\right)=\left(\begin{array}{cccc}
\frac{\partial^{2} \mathcal{L}}{\partial \beta_{1}^{2}} & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{1} 1 \beta_{2}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{1} \partial \beta_{K}} \\
\frac{\partial^{2} \mathcal{L}}{\partial \beta_{2} \partial \beta_{1}} & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{2}^{2}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{2} \partial \beta_{K}} \\
\vdots & \ddots & & \vdots \\
\vdots & & \ddots & \vdots \\
\frac{\partial^{2} \mathcal{L}}{\partial \beta_{K} \partial \beta_{1}} & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{K} \partial \beta_{2}} & \cdots & \frac{\partial^{2} \mathcal{L}}{\partial \beta_{K}^{2}}
\end{array}\right)
\]
\(-\nabla^{2} \mathcal{L}\left(\beta^{*}\right)^{-1}\) is a consistent estimator of the variance-covariance matrix of the estimates

\section*{Output of the estimation}
\begin{tabular}{rrrr} 
Parameter & Value & Std Err. & \(t\)-test \\
\hline\(\beta_{0}\) & 0.2376 & 0.7505 & 0.32 \\
\(\beta_{1}\) & -0.0531 & 0.0206 & -2.57
\end{tabular}

Summary statistics:
- \(\mathcal{L}\left(\beta^{*}\right)=-6.166\)
- \(\mathcal{L}(0)=-14.556\)
- \(-2\left(\mathcal{L}(0)-\mathcal{L}\left(\beta^{*}\right)\right)=16.780\)
- \(\rho^{2}=0.576, \bar{\rho}^{2}=0.439\)

\section*{Output of the estimation}
\(\mathcal{L}(0)\) is the sample log-likelihood with a trivial model where all parameters are zero, that is a model always predicting
\[
\begin{aligned}
& P(1 \mid\{1,2\})=P(2 \mid\{1,2\})=\frac{1}{2} \\
& \mathcal{L}(0)=\log \left(\frac{1}{2^{N}}\right)=-N \log (2)
\end{aligned}
\]

\section*{Output of the estimation}
\(-2\left(\mathcal{L}(0)-\mathcal{L}\left(\beta^{*}\right)\right)\) is the likelihood ratio.
Indeed,
\[
\log \left(\frac{\overline{\mathcal{L}}(0)}{\overline{\mathcal{L}}\left(\beta^{*}\right)}\right)=\log (\overline{\mathcal{L}}(0))-\log \left(\overline{\mathcal{L}}\left(\beta^{*}\right)\right)=\mathcal{L}(0)-\mathcal{L}\left(\beta^{*}\right)
\]
\(-2\left(\mathcal{L}(0)-\mathcal{L}\left(\beta^{*}\right)\right)\) is asymptotically distributed as \(\chi^{2}\) with \(K\) degrees of freedom

Similar to the \(F\) test in regression models

\section*{Output of the estimation}
\[
\rho^{2}=1-\frac{\mathcal{L}\left(\beta^{*}\right)}{\mathcal{L}(0)}
\]

Similar to the \(R^{2}\) in regression models
\[
\bar{\rho}^{2}=1-\frac{\mathcal{L}\left(\beta^{*}\right)-K}{\mathcal{L}(0)}
\]

\section*{Comparing models}
- Arbitrary scale may be problematic when comparing models
- Binary probit: \(\sigma^{2}=\operatorname{Var}\left(\varepsilon_{i}-\varepsilon_{j}\right)=1\)
- Binary logit: \(\operatorname{Var}\left(\varepsilon_{i}-\varepsilon_{j}\right)=\pi^{2} /(3 \mu)=\pi^{2} / 3\)
- \(\operatorname{Var}(\alpha U)=\alpha^{2} \operatorname{Var}(U)\).
- Scaled logit coeff. are \(\pi / \sqrt{3}\) larger than scaled probit coeff.

\section*{Comparing models}

\section*{Same example \((\pi / \sqrt{3} \approx 1.814)\)}
\begin{tabular}{rrrl} 
& Probit & Logit & Probit * \(\pi / \sqrt{3}\) \\
\hline \(\mathcal{L}\) & -6.165 & -6.166 & \\
\(\beta_{0}\) & 0.064 & 0.238 & 0.117 \\
\(\beta_{1}\) & -0.030 & -0.053 & -0.054
\end{tabular}

\section*{Appendix}

\section*{Maximum likelihood for binary logit}
- Let \(\mathcal{C}_{n}=\{i, j\}\)
- Let \(y_{i n}=1\) if \(i\) is chosen by \(n, 0\) otherwise
- Let \(y_{j n}=1\) if \(j\) is chosen by \(n, 0\) otherwise
- Obviously, \(y_{i n}=1-y_{j n}\)
- Log-likelihood of the sample
\[
\sum_{n=1}^{N}\left(y_{i n} \ln \frac{e^{V_{i n}}}{e^{V_{i n}}+e^{V_{j n}}}+y_{j n} \ln \frac{e^{V_{j n}}}{e^{V_{i n}}+e^{V_{j n}}}\right)
\]

\section*{Maximum likelihood for binary logit}
\[
\begin{gathered}
P_{n}(i)=\frac{e^{V_{i n}}}{e^{V_{i n}}+e^{V_{j n}}} \\
\ln P_{n}(i)=V_{i n}-\ln \left(e^{V_{i n}}+e^{V_{j n}}\right) \\
\frac{\partial \ln P_{n}(i)}{\partial V_{i n}}=1-\frac{e^{V_{i n}}}{e^{V_{i n}}+e^{V_{j n}}}=1-P_{n}(i)=P_{n}(j) \\
\frac{\partial \ln P_{n}(i)}{\partial V_{j n}}=-\frac{e^{V_{j n}}}{e^{V_{i n}}+e^{V_{j n}}}=-P_{n}(j)
\end{gathered}
\]

\section*{Maximum likelihood for binary logit}
\[
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \theta}=\frac{\partial \mathcal{L}}{\partial V_{i n}} \frac{\partial V_{i n}}{\partial \theta}+\frac{\partial \mathcal{L}}{\partial V_{j n}} \frac{\partial V_{j n}}{\partial \theta} \\
\frac{\partial \mathcal{L}}{\partial V_{i n}}= & \sum_{n=1}^{N}\left(y_{i n} \frac{\partial \ln P_{n}(i)}{\partial V_{i n}}+y_{j n} \frac{\partial \ln P_{n}(j)}{\partial V_{i n}}\right) \\
= & \sum_{n=1}^{N}\left(y_{i n} P_{n}(j)-y_{j n} P_{n}(i)\right) \\
= & \sum_{n=1}^{N}\left(y_{i n}\left(1-P_{n}(i)\right)-\left(1-y_{i n}\right) P_{n}(i)\right) \\
= & \sum_{n=1}^{N}\left(y_{i n}-P_{n}(i)\right) \\
= & -\sum_{n=1}^{N}\left(y_{j n}-P_{n}(j)\right)
\end{aligned}
\]

\section*{Maximum likelihood for binary logit}
\[
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \theta} & =\sum_{n=1}^{N}\left(y_{i n}-P_{n}(i)\right) \frac{\partial V_{i n}}{\partial \theta}+\left(y_{j n}-P_{n}(j)\right) \frac{\partial V_{j n}}{\partial \theta} \\
& =\sum_{n=1}^{N}\left(y_{i n}-P_{n}(i)\right)\left(\frac{\partial V_{i n}}{\partial \theta}-\frac{\partial V_{j n}}{\partial \theta}\right)
\end{aligned}
\]

If \(V_{i n}=\sum_{k} \theta_{k} x_{i n k}\), then
\[
\frac{\partial \mathcal{L}}{\partial \theta_{k}}=\sum_{n=1}^{N}\left(y_{i n}-P_{n}(i)\right)\left(x_{i n k}-x_{j n k}\right)
\]```

