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Probability distributions

A probability density function on a set S of outcomes must

• be non negative for all outcomes in S,

• sum up or integrate to 1.

Example:

f(x) =
x

4
+

7x3

2
, with 0 ≤ x ≤ 1,

is a PDF.

Is it useful in practice?
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Probability distributions

A PDF should model probabilistic behavior of real-world
phenomena.

• Normal distribution

• Poisson distribution

• Gamma distributions

• Extreme Value distributions

• . . .
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Normal distribution

f(x) =
1√
2π

e−x2/2, x ∈ R.

Motivation: Central Limit Theorem

• X1, X2, . . . infinite sequence of i.i.d random variables, with finite
mean µ and finite variance σ2.

• For any number a and b

lim
n→∞

P

(

a ≤
∑n

i=1 Xi − nµ√
nσ

≤ b

)

=
1√
2π

∫ b

a

e−x2/2dx
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Normal distribution
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Normal distribution

Cumulative Distribution Function (CDF)

P (X ≤ a) =
1√
2π

∫ a

−∞

e−x2/2dx

No closed form formula

Notation:
X ∼ N(0, 1)

• fX(x) is the PDF

• FX(x) is the CDF
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Normal distribution
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Normal distribution

X ∼ N(µ, σ2)

fX(x) =
1

σ
√
2π

e−(x−µ)2/2σ2

, x ∈ R.

Y ∼ N(0, 1)

Y =
X − µ

σ
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Normal distribution

• Linear combinations of normal r.v.:
• Xi, i = 1, . . . , n

• Xi ∼ N(µi, σ
2
i )

• Xi independent
• Then, if αi ∈ R, i = 1, . . . , n

n
∑

i=1

αiXi ∼ N

(

n
∑

i=1

αiµi,

n
∑

i=1

α2
iσ

2
i

)

Review of statistics – p. 9/42



Normal distribution

• Linear transformation of a normal r.v.
• X ∼ N(µ, σ2)

• α, β ∈ R

• Then,
α+ βX ∼ N

(

α+ βµ, β2σ2
)

• Parameter estimation

Parameter Estimator Method/properties
µ x̄ Unbiased, maximum likelihood
σ2 n

n−1s
2 Unbiased

σ2 s2 Maximum likelihood
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Extreme value distribution

• X1, . . . , Xn i.i.d.

• fXi
(x) = f(x), FXi

(x) = F (x), i = 1, . . . , n

• X ′

n = max(X1, . . . , Xn)

• Applications:
• rainfall
• floods
• earthquakes
• air pollution
• ...
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Extreme value distribution

Emil
Julius

Gumbel

1891–1966

• father of extreme value theory

• politically involved left-wing pacifist in Germany,

• strongly against right wing’s campaign of
organized assassination (1919)

• first German professor to be expelled from
university under the pressure of the Nazis

• in 1932 he left Heidelberg to Paris, where he met
Borel and Fréchet.

• in 1940, he had to escape to New-York, where he
continued his fight against Nazism by helping the
US secret service.
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Extreme value distribution

• X ′

n = max(X1, . . . , Xn)

• FX′

n
= F (x)n. Indeed

P (X ′

n ≤ x) = P (X1 ≤ x)P (X2 ≤ x) . . . P (Xn ≤ x)

• Warning: if n → ∞

lim
n→∞

FX′

n
(x) =

{

1 if F (x) = 1

0 if F (x) < 1

Degenerate distribution
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Extreme value distribution

• We want a limiting distribution which is non degenerate

• Limiting distribution of some sequence of transformed
“reduced” values

• For instance anX
′

n + bn

• an, bn do not depend on x

• CDF of limiting distribution: G(x)

• Let’s identify desired properties
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Extreme value distribution

X1 . . . Xn max(X1, . . . , Xn)

Xn+1 . . . X2n max(Xn+1, . . . , X2n)
...

...
X(i−1)n+1 . . . Xin max(X(i−1)n+1, . . . , Xin)

...
...

X(N−1)n+1 . . . XNn max(X(N−1)n+1, . . . , XNn)

Two ways of seeing max(X1, . . . , XNn) when n → ∞
1. As a max of many Xi, the CDF should look like G(aNx+ bN )

2. The CDF of the max of each row is G(x)

3. So the CDF of the max of all rows is G(x)N .
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Extreme value distribution

Stability postulate (Fréchet, 1927):

G(x)N = G(aNx+ bN )

We consider here the case aN = 1 to obtain the so-called “type I
extreme value distribution”

G(x)N = G(x+ bN )

We have also

G(x)MN = G(x+ bN )M = G(x+ bN + bM )

G(x)MN = G(x+ bMN )
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Extreme value distribution

Therefore
G(x+ bN + bM ) = G(x+ bMN )

that is
bN + bM = bMN

so that bN must be of the form

bN = −σ′ lnN,

and the stability postulate becomes

G(x)N = G(x− σ′ lnN)

Let’s take the logarithm twice
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Extreme value distribution

G(x)N = G(x− σ′ lnN)

N lnG(x) = lnG(x− σ′ lnN)

Warning: G is a CDF, so G(x) ≤ 1 and lnG(x) ≤ 0, ∀x

−N lnG(x) = − lnG(x− σ′ lnN)

lnN + ln(− lnG(x)) = ln(− lnG(x− σ′ lnN))

Define h(x) = ln(− lnG(x)) to obtain

lnN + h(x) = h(x− σ′ lnN)

h is affine.
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Extreme value distribution

lnN + h(x) = h(x− σ′ lnN)

h(x) = αx+ β

h(0) = β

lnN + αx+ β = α(x− σ′ lnN) + β

α = − 1
σ′

Therefore
h(x) = h(0)− x

σ′
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Extreme value distribution

G is increasing in x (CDF), so h is decreasing in x
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Therefore, σ′ > 0
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Extreme value distribution

h(x) = ln(− lnG(x)) = h(0)− x

σ′

− lnG(x) = exp
(

h(0)− x

σ′

)

= exp
(

−x− σ′h(0)

σ′

)

G(x) = exp
(

−exp
(

−x− σ′h(0)

σ′

))

Let σ = 1/σ′ and µ = σ′h(0) = ln(− lnG(0))/σ

G(x) = exp (−exp (−σ(x− µ)))
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Extreme value distribution
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Extreme value distribution
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Extreme value distribution

Type I Extreme Value Distribution or Gumbel Distribution

• X ∼ EV (µ, σ)

• Location parameter: µ

• Scale parameter: σ > 0

• CDF: closed form

FX(x) = exp
(

−e−σ(x−µ)
)

• PDF
fX(x) = σe−σ(x−µ)exp

(

−e−σ(x−µ)
)
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Extreme value distribution

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-3 -2 -1  0  1  2  3

Gumbel PDF mu=0 sigma=1

Review of statistics – p. 25/42



Extreme value distribution
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Extreme value distribution

Properties

• Mode: µ

• Mean: µ+ γ/σ where γ is Euler’s constant

γ = −
∫ +∞

0

e−x lnxdx = lim
n→∞

(

n
∑

k=1

1

k
− lnn

)

≈ 0.57721566

• Variance: π2/6σ2
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Extreme value distribution

Properties (ctd)

• Let X ∼ EV (µ, σ), α > 0 and β ∈ R. Then

αX + β ∼ EV (αµ+ β, σ/α)

• Let X1 ∼ EV (µ1, σ) and X2 ∼ EV (µ2, σ)

X = X1 −X2 ∼ Logistic(µ2 − µ1, σ)

that is

FX(x) =
1

1 + exp(−σ(x− (µ2 − µ1)))
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Extreme value distribution

Properties (ctd)

• Let X1 ∼ EV (µ1, σ) and X2 ∼ EV (µ2, σ)

X = max(X1, X2) ∼ EV

(

1

σ
ln(eσµ1 + eσµ2), σ

)

• Let Xi ∼ EV (µi, σ), i = 1, . . . , n

X = max(X1, . . . , Xn) ∼ EV

(

1

σ
ln

n
∑

i=1

eσµi , σ

)

• The sum of two EV r.v. is not an EV r.v.
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Estimation

• Families of models with parameters

• Estimation: approximate parameters from a random sample

• Estimator: random variable

• Classical methods: maximum likelihood, method of moments
(least squares)
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Estimation

Likelihood function
Let x1, . . . , xn be a realization of a random sample X1, . . . , Xn from
fX(x; θ), where θ ∈ R

p is a vector of unknown parameters. The function

L : Rp → [0, 1]

L(θ) =

n
∏

i=1

fX(xi; θ)

provides the likelihood of the sample as a function of θ.
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Estimation

Maximum likelihood estimate
Let x1, . . . , xn be a realization of a random sample X1, . . . , Xn from

fX(x; θ), where θ ∈ R
p is a vector of unknown parameters. If θ̂ is such

that

L(θ̂) ≥ L(θ)

for all possible values of θ, then θ̂ is called the maximum likelihood estimate
for θ.

Note: it is computationally easier to maximize

lnL(θ) = ln

n
∏

i=1

fX(xi; θ) =

n
∑

i=1

ln fX(xi; θ)

where lnL : Rp → ]−∞, 0]
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Properties of estimators

Unbiasedness
Let X1, . . . , Xn be a random sample from fX(x; θ). An estimator θ̂ is said
to be unbiased if

E(θ̂) = θ.
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Properties of estimators

Efficiency (scalar)

Let θ̂1 and θ̂2 be two unbiased estimators for θ ∈ R. If

Var(θ̂1) < Var(θ̂2)

then θ̂1 is more efficient than θ̂2.

Efficiency (vector)

Let θ̂1 and θ̂2 be two unbiased estimators for θ ∈ R
p. If the matrix

Var(θ̂2)−Var(θ̂1)

is positive definite, then θ̂1 is more efficient than θ̂2. We note

Var(θ̂1) < Var(θ̂2)
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Properties of estimators

Cramer-Rao bound (scalar)

Let X1, . . . , Xn be a random sample from fX(x; θ), and θ̂ an unbiased
estimator of θ ∈ R. Under appropriate assumptions,

Var(θ̂) ≥
(

−nE

[

∂2 ln fX(x; θ)

∂θ2

])

−1

=

(

−E

[

∂2 lnL(θ)

∂θ2

])

−1
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Properties of estimators

Cramer-Rao bound (vector)

Let X1, . . . , Xn be a random sample from fX(x; θ), and θ̂ an unbiased
estimator of θ ∈ R

p. Under appropriate assumptions,

Var(θ̂) ≥ −E[∇2 lnL(θ)]−1

that is

Var(θ̂) + E[∇2 lnL(θ)]−1

is positive definite. The matrix

−E[∇2 lnL(θ)]

is called the information matrix.
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Asymptotic properties of estimators

Consistency

An estimator θ̂n is said to be consistent for θ if it converges in probability to θ,
that is ∀ε > 0,

lim
n→0

P (|θ̂n − θ| < ε) = 1.
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Asymptotic properties of estimators

Under fairly general assumptions, maximum likelihood estimators
are

• consistent

• asymptotically normal

• asymptotically efficient (asymptotic variance = Cramer-Rao
bound)

Warning: large sample properties
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Estimator of the asymptotic variance for ML

• Cramer-Rao Bound with the estimated parameters

V̂ = −∇2 lnL(θ̂)−1

• Berndt, Hall, Hall & Haussman (BHHH) estimator

V̂ =

(

n
∑

i=1

ĝiĝ
T
i

)

−1

where

ĝi =
∂ ln fX(xi; θ)

∂θ
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Hypothesis test: t-test

Is the estimated parameter θ̂ significantly different from a given
value θ∗?

• H0 : θ̂ = θ∗

• H1 : θ̂ 6= θ∗

Under H0, if θ̂ is normally distributed with known variance σ2

θ̂ − θ∗

σ
∼ N(0, 1).

Therefore

P (−1.96 ≤ θ̂ − θ∗

σ
≤ 1.96) = 0.95 = 1− 0.05
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Hypothesis tests

P (−1.96 ≤ θ̂ − θ∗

σ
≤ 1.96) = 0.95 = 1− 0.05

H0 can be rejected at the 5% level if

∣

∣

∣

∣

θ̂ − θ∗

σ

∣

∣

∣

∣

≥ 1.96.

• If θ̂ asymptotically normal

• If variance unknown

• A t test should be used with n degrees of freedom.

• When n ≥ 30, the Student t distribution is well approximated by
a N(0, 1)
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Hypothesis tests

• Let X1, . . . , Xn be a random sample from fX(x; θ), θ ∈ R
p

• θ̂U ∈ R
p is the maximum likelihood estimator.

• θ̂R ∈ R
q, q < p, is the ML estimator of a restricted model.

• e.g. θ1 = θ2 = . . . = θp

• H0 : the restrictions are correct

• Under H0,

−2(lnL(θR)− lnL(θU )) = −2 ln
L(θR)

L(θU )
∼ χ2(p− q)
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