Optimization and Simulation

Optimization project

Nikola Obrenović

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

Goals

Full application of a **simulation-based optimization** example:

- Simulation
 - develop a discrete-event simulation
 - identify the appropriate statistical indexes
 - correctly use simulation for generating results
 - correctly analyze the result of simulation
 - use variance reduction techniques
 - use bootstrapping technique
- Optimization
 - identify the decision variables
 - identify the objectives
 - develop the optimization algorithm to explore the space
 - identify the "optimal" solutions (multi-objectives)

Overview

Aim: identify the "optimal" system configuration

Example simulation-based project: traffic simulation

Simulation project example

Traffic simulation of Kid City

Discrete event simulation to represent the traffic in Kid City

What is the best street to close?

Decision variables:

Close roads

Objectives:

- traffic conditions (queue-length)
- cost

The Optimization Problem

Objective: identify the best location for the road closure. Objective function example:

> minimize average-queue-length in the city minimize cost of closing the road

> > $\min_{x\in X} Z(x)$

$$Z = \theta\{f(x)\}$$

where

- *x* is the network with road *i* closed
- *f(x)* is the desired indicator at solution *x*, e.g. averagequeue-length with road *i* closed, and cost of closing road *i*
- θ{.} is the statistic considered, e.g. maximum, 95percentile, average

Keep in mind

Recommendations

"Optimization Project":

- expand the discrete-event simulation
- embed the discrete-event simulation in the optimization algorithm

Attention: computational time

Assigned projects

Group	Project	Title	
Group 1	Project 1	Train service	
Group 2	Project 2	Restaurant design	
Group 3	Project 3	Drone delivery service	
Group 4	Project 4	Jeans store management	
Group 5	Project 5	Online movie streaming	
Group 6	Project 6	Airline yield management	

All information already present in the project description

Assigned projects

Group	Name		
Group 1	Segrelles Munárriz Lara Gimena		
	Ecker András		
	Gehrke Alexander		
Group 2	Genc Murat		
	Park Jangwon		
	Beojone Caio Vitor		
	Montesinos Ferrer Martí		
Group 3	De La Rochefoucauld Louis Marie Franois Bernard		
	Ataç Selin		
	Mallya Nithin		

Assigned projects

Group	Name		
Group 4	Lüthi Adrien Bernard André		
	Cattry Alexandre Dominique M.		
	Mariani Olivia		
Group 5	Amorim Leandro De Castro Amoedo Rafael		
	Granacher Julia		
	Li Xiang		
Group 6	Bolón Brun Natalie de Guyon-Crozier Guillaume		
	Wasilewski Stephen William		

Project and exercise deliverables

Project presentation

Deliverables

- Please submit by email to *nikola.obrenovic@epfl.ch* :
 - Source code from the TSP exercise
 - Project presentation in the PDF format
 - Source code developed for the project
- Please group all deliverables into a single archive (e.g. OptSim2019_GroupX.zip)
- Deadline: 28.05.2018 at noon

Project presentation

Presentation

35 minutes per group. 25 min presentation + 10 min questions (both simulation and optimization parts)

Required contents for the optimization part

- Problem description
- Decision variables, objective function
- Optimization algorithm
- Results
- Suggested "optimal" configuration

Project presentation

Schedule, 28.05.2018, Room GR C0 01

- May 28, 2019, at GR C0 01.
- Make sure that the 1st presentation will start 13:15 on time.
- 25 minutes presentation and 10 minutes Q&A.
- You should include both simulation and optimization parts.

Group	Time	Review		
Group 1	13:15-13:50	Group 6		
Group 2	13:50-14:25	Group 1		
Group 3	14:25-15:00	Group 2		
15 minutes break				
Group 4	15:15-15:50	Group 3		
Group 5	15:50-16:25	Group 4		
Group 6	16:25-17:00	Group 5		

