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Goals

MCMC:

Understand how to draw from a complex distribution

Use Markov Chain Monte Carlo methods

Implementation:

1 Markov Chain Monte Carlo

2 Metropolis-Hastings algorithm

3 Gibbs sampling
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Markov Chain Monte Carlo

Markov Chain Monte Carlo

Exercise:

Implement a Markov chain model representing the ”machine”
example introduced in the lecture.

Codes:

1 MarkovChain.m: to implement

2 MarkovChainTest.m: to test the implementation

TODO:

Play with different state space, initial state and transition matrix.

Extra question on MSE in MarkovChainTest.
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Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

Context:

Professor M. sees that the students in his course are extremely
emotional.

He records their emotional states, which change every hour.

In the total duration of the course, he records the following statistics:

Sad: 15 hours,
So-so: 20 hours,
Happy: 31 hours.
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Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

Exercise:

Implement a Metropolis Hastings to represent the emotional state of
students.

Codes:

1 MetropolisHastings.m: to implement

2 MetropolisHastingsTest.m: to test the implementation
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Gibbs sampling
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Gibbs sampling

Gibbs sampling

Exercise:

Use the Gibbs sampling algorithm to draw from the bivariate normal
distribution introduced in the lecture.

Codes:

1 GibbsSamplingBN.m: to implement

2 GibbsSamplingBNTest.m: to test the implementation
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My results
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My results

Markov Chain Monte Carlo sampling
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My results

Metropolis-Hastings
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Accept: [2210 2941 3393]

Reject: [1026 430 0]

Simulated: [0.2217 0.3241 0.4542]

Target: [0.2286 0.3178 0.4537]
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My results

Gibbs sampling
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