Optimization and Simulation Simulating events: the Poisson process

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

ECOLE POLYTECHNIQUE

Siméon Denis Poisson

(日) (同) (三) (三)

Siméon-Denis Poisson

French mathematician (1781–1840).

M. Bierlaire (TRANSP-OR ENAC EPFL)

Outline

Non homogeneous Poisson process

э

イロト イポト イヨト イヨト

Poisson random variable

- Number of successes in a large number *n* of trials (binomial distribution)
- when the probability *p* of a success is small.
- Denote $\lambda = np$.

Probability of k successes

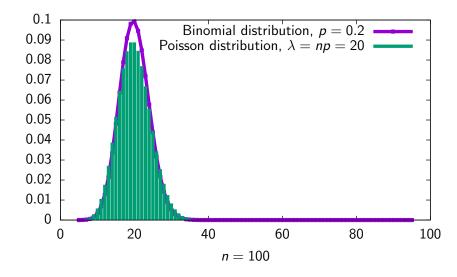
$$\Pr(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Property

$$\mathsf{E}[X] = \mathsf{Var}(X) = \lambda.$$

通 ト イヨト イヨト

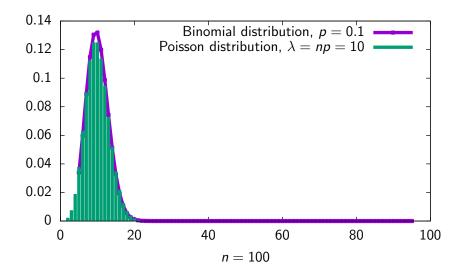
Poisson random variable



3

イロト 人間ト イヨト イヨト

Poisson random variable



3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

Non homogeneous Poisson process

э

イロト イポト イヨト イヨト

Events are occurring at random time points N(t) is the number of events during [0, t]

Poisson process with rate $\lambda > 0$ if

1 N(0) = 0,

- If a state of events occurring in disjoint time intervals are independent,
- 3 distribution of N(t+s) N(t) depends on s, not on t,
- **(**) probability of one event in a small interval is approx. λh :

$$\lim_{h\to 0}\frac{\Pr(N(h)=1)}{h}=\lambda_{1}$$

probability of two events in a small interval is approx. 0:

$$\lim_{h \to 0} \frac{\Pr(N(h) \ge 2)}{h} = 0$$

M. Bierlaire (TRANSP-OR ENAC EPFL)

8 / 18

Property

$$N(t) \sim \mathsf{Poisson}(\lambda t), \quad \mathsf{Pr}(N(t) = k) = e^{-\lambda t} \frac{(\lambda t)^k}{k!}$$

Inter-arrival times

- *S_k* is the time when the *k*th event occurs,
- X_k = S_k S_{k-1} is the time elapsed between event k 1 and event k.
 X₁ = S₁
- Distribution of X_1 : $\Pr(X_1 > t) = \Pr(N(t) = 0) = e^{-\lambda t}$.
- Distribution of X₂:

$$Pr(X_k > t | S_{k-1} = s) = Pr(0 \text{ events in }]s, s+t] | S_{k-1} = s)$$

= Pr(0 events in]s, s+t])
= $e^{-\lambda t}$.

Inter-arrival times (ctd.)

- X_1 is an exponential random variable with mean $1/\lambda$
- X_2 is an exponential random variable with mean $1/\lambda$
- X_2 is independent of X_1 .
- Same arguments can be used for $k = 3, 4 \dots$

Therefore, the CDF of X_k is, for any k,

$$F(t) = \Pr(X_k \leq t) = 1 - \Pr(X_k > t) = 1 - e^{-\lambda t}$$

The pdf is

$$f(t) = rac{dF(t)}{dt} = \lambda e^{-\lambda t}.$$

イロト 人間ト イヨト イヨト

Conclusion

The inter-arrival times X_1 , X_2 ,... are independent and identically distributed exponential random variables with parameter λ , and mean $1/\lambda$.

Simulation

• Simulation of event times of a Poisson process with rate λ until time \mathcal{T} :

(a)
$$t = 0, k = 0.$$

(b) Draw $r \sim U(0, 1).$
(c) $t = t - \ln(r)/\lambda.$
(c) If $t > T$, STOP.
(c) $k = k + 1, X_k = t$
(c) Go to step 2.

Outline

3 Non homogeneous Poisson process

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

```
Rate varies with time \lambda(t).
```

Non homogeneous Poisson process with rate $\lambda(t)$ if

- **()** N(0) = 0
- # of events occurring in disjoint time intervals are independent,
- **③** probability of one event in a small interval is approx. $\lambda(t)h$:

$$\lim_{h\to 0}\frac{\Pr\left(\left(N(t+h)-N(t)\right)=1\right)}{h}=\lambda(t),$$

probability of two events in a small interval is approx. 0:

$$\lim_{h\to 0}\frac{\Pr\left(\left(N(t+h)-N(t)\right)\geq 2\right)}{h}=0.$$

Mean value function

$$m(t)=\int_0^t\lambda(s)ds,\ t\geq 0.$$

Poisson distribution

$$N(t+s) - N(t) \sim \text{Poisson}(m(t+s) - m(t))$$

Link with homogeneous Poisson process

- Consider a Poisson process with rate λ .
- If an event occurs at time t, count it with probability p(t).
- The process of counted events is a non homogeneous Poisson process with rate λ(t) = λp(t).

(日) (同) (三) (三)

Proof

- N(0) = 0 [OK]
- **2** # of events occurring in disjoint time intervals are independent, [OK]
- **③** probability of one event in a small interval is approx. $\lambda(t)h$: [?]

$$\lim_{h\to 0}\frac{\Pr\left(\left(N(t+h)-N(t)\right)=1\right)}{h}=\lambda(t),$$

probability of two events in a small interval is approx. 0: [OK]

$$\lim_{h\to 0}\frac{\Pr\left(\left(N(t+h)-N(t)\right)\geq 2\right)}{h}=0.$$

Proof (ctd.)

- N(t) number of events of the non homogeneous process
- N'(t) number of events of the underlying homogeneous process

 $\Pr\left(\left(N(t+h)-N(t)\right)=1\right)$

$$= \sum_{k} \Pr((N'(t+h) - N'(t)) = k, 1 \text{ is counted})$$

= $\Pr((N'(t+h) - N'(t)) = 1, 1 \text{ is counted})$
= $\Pr((N'(t+h) - N'(t)) = 1)\Pr(1 \text{ is counted})$
= $\Pr(N'(h) = 1)\Pr(1 \text{ is counted})$

$$\lim_{h \to 0} \frac{\Pr((N(t+h)-N(t))=1)}{h} = \lim_{h \to 0} \frac{\Pr(N'(h)=1)}{h} \Pr(1 \text{ is counted})$$

$$= \lambda p(t).$$

Optimization and Simulation

Simulation of event times of a non homogeneous Poisson process with rate $\lambda(t)$ until time ${\cal T}$

• Consider λ such that $\lambda(t) \leq \lambda$, for all $t \leq T$.

2
$$t = 0, k = 0.$$

- **3** Draw $r \sim U(0, 1)$.
- $t = t \ln(r)/\lambda.$
- If t > T, STOP.
- Generate $s \sim U(0, 1)$.
- If $s \leq \lambda(t)/\lambda$, then k = k + 1, X(k) = t.

Go to step 3.

- 4 同 6 4 日 6 4 日 6

Summary

Outline

- Poisson random variable
- Poisson process
- Non homogeneous Poisson process

Comments

- Main assumption: events occur continuously and independently of one another
- Typical usage: arrivals of customers in a queue
- Easy to simulate

4 1 1 4 1 1 4