Sequential Quadratic Programming Method

Assigned to: Milosavljevic Predrag, Martand Singhal, Almeida Samora Irene, Chiappino Pepe Anush

February 26, 2014

General description of the algorithm

Objective

Find the local minimum of the non-linear optimization problem:

$$
\min _{x \in \mathcal{R}^{n}} f(x)
$$

such that $h(x)=0$.

Input

- Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$, two-times differentiable
- Gradient $\nabla f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$
- Hessian $\nabla^{2} f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times n}$
- Function $h: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}$, two-times differentiable
- Gradient $\nabla h: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times m}$
- Hessian $\nabla^{2} h_{i}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times n}$ for every constraint $i=1, \ldots, m$
- Parameter $0<\beta_{1}<1$
- Parameter $\bar{c}>0$
- Initial solution $\left(x_{0}, \lambda_{0}\right)$
- Precision $\epsilon \in \mathcal{R}, \epsilon>0$

Initialization

$k=0, c_{0}=\left\|\lambda_{0}\right\|_{\infty}+\bar{c}$

Iterations

1. Compute $\nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right)=\nabla^{2} f\left(x_{k}\right)+\sum_{i=1}^{m}\left(\lambda_{k}\right)_{i} \nabla^{2} h_{i}\left(x_{k}\right)$
2. Find a positive-definite approximation H_{k} of $\nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right)$ by using the modified Cholesky factorization
3. Find d_{x}, d_{λ} by solving the following quadratic problem

$$
\begin{gathered}
\min _{d} \nabla f\left(x_{k}\right)^{T} d+\frac{1}{2} d^{T} \nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right) d \\
\text { s.t. } \quad \nabla h\left(x_{k}\right)^{T} d+h\left(x_{k}\right)=0
\end{gathered}
$$

by using the analytic solution,

$$
d_{\lambda}=H^{-1}\left(h\left(x_{k}\right)-\nabla h\left(x_{k}\right)^{T} \nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right)^{-1} \nabla f\left(x_{k}\right)\right)
$$

with $H=\nabla h\left(x_{k}\right)^{T} \nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right)^{-1} \nabla h\left(x_{k}\right)$

$$
d_{x}=-\nabla_{x x}^{2} L\left(x_{k}, \lambda_{k}\right)^{-1}\left(\nabla h\left(x_{k}\right) d_{\lambda}+\nabla f\left(x_{k}\right)\right)
$$

4. $c^{+}=\left\|d_{\lambda}\right\|_{\infty}+\bar{c}$
5. Update the penalty parameter:
(a) if $c_{k} \geq 1.1 c^{+}$, then $c_{k+1}=\frac{1}{2}\left(c_{k}+c^{+}\right)$;
(b) if $c^{+} \leq c_{k}<1.1 c^{+}$, then $c_{k+1}=c_{k}$;
(c) if $c_{k}<c^{+}$, then $c_{k+1}=\max \left\{1.5 c_{k}, c^{+}\right\}$.
6. Compute $\phi_{c_{k}}^{\prime}\left(x_{k}, d_{x}\right)=\nabla f\left(x_{k}\right)^{T} d_{x}-c_{k}\left\|h\left(x_{k}\right)\right\|_{1}$
(a) $i=0, \alpha_{0}=1$;
(b) until $\phi_{c_{k}}\left(x_{k}+\alpha_{i} d_{x}\right)<\phi_{c_{k}}\left(x_{k}\right)+\alpha_{i} \beta_{1} \phi_{c_{k}}^{\prime}\left(x_{k}, d_{x}\right)$, set $\alpha_{i+1}=\alpha_{i} / 2$ and $i=i+1$;
(c) $\alpha=\alpha_{i}$.
7. $x_{k+1}=x_{k}+\alpha d_{x}$
8. $\lambda_{k+1}=d_{\lambda}$
9. $k=k+1$

Stopping criterion

$\left\|\nabla L\left(x_{k}, \lambda_{k}\right)\right\| \leq \epsilon$

Algorithm testing \& analysis

The sutdents will implement and apply the above algorithm to the following problem:

$$
\begin{gathered}
\min _{x \in \mathcal{R}^{10}} \sum_{i=1}^{10} e^{x_{i}}\left(c_{i}+x_{i}-\ln \left(\sum_{k=1}^{10} e^{x_{k}}\right)\right) \\
e^{x_{1}}+2 e^{x_{2}}+2 e^{x_{3}}+e^{x_{6}}+e^{x_{10}}=2 \\
e^{x_{4}}+2 e^{x_{5}}+e^{x_{6}}+e^{x_{7}}=1 \\
e^{x_{3}}+e^{x_{7}}+e^{x_{8}}+2 e^{x_{9}}+e^{x_{10}}=1 \\
-100 \leq x_{i} \leq 100, \forall i=1, \ldots, 10
\end{gathered}
$$

with

$$
\begin{array}{ccccc}
c_{1}=-6.089 & c_{2}=-17.164 & c_{3}=-34.054 & c_{4}=-5.914 & c_{5}=-24.721 \\
c_{6}=-14.986 & c_{7}=-24.1 & c_{8}=-10.708 & c_{9}=-26.662 & c_{10}=-22.179
\end{array}
$$

Suggested starting point: $x_{0}=[-2.3,-2.3, \ldots,-2.3]$.
Note that the students need to transform the above problem to the required format, i.e., $\min _{x \in \mathcal{R}^{n}} f(x)$ s.t., $h(x)=0$. It is encouraged that the students to change the value of β_{1} (e.g., $\beta_{1}=0.2,0.4,0.6,0.8$) and analyze its impact on the algorithm.

