Preconditioned Projected Gradient Method

Assigned to: Stepanova Lidia,Markov Iliya Dimitrov, Perez Saez Francisco Javier,Fernandez Antolin Anna

February 26, 2014

General description of the algorithm

Objective

Find (an approximation of) a local minimum of the following problem:

$$
\min _{x \in X \subseteq \mathcal{R}^{n}} f(x)
$$

where X is closed, convex and not empty.

Input

- Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$, differentiable
- Gradient $\nabla f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$
- Projection operator on $X,[\cdot]^{P}$
- First approximation of the solution $x_{0} \in \mathcal{R}^{n}$
- Parameter $\gamma>0$ (for example, $\gamma=1$)
- Precision $\epsilon \in \mathcal{R}, \epsilon>0$

Output

An approximation of the solution $x^{*} \in \mathcal{R}^{n}$

Iterations

1. $y_{k}=\left[x_{k}-\gamma \nabla f\left(x_{k}\right)\right]^{P}$
2. $d_{k}=y_{k}-x_{k}$
3. determine α_{k} by applying linesearch with $\alpha_{0}=1$
4. $x_{k+1}=x_{k}+\alpha_{k} d_{k}$
5. $k=k+1$

Stopping criterion

If $\left\|d_{k}\right\| \leq \epsilon$, then $x^{*}=x_{k}$

Algorithm testing \& analysis

The sutdents will implement and apply the above algorithm to the following non-linear problem:

$$
\min _{x \in X} x_{1}^{2}-12 x_{1}+10 \cos \left(\frac{\pi}{2} x_{1}\right)+8 \sin \left(5 \pi x_{1}\right)-\frac{\exp \left(-\left(x_{2}-\frac{1}{2}\right)^{2} / 2\right)}{\sqrt{5}}
$$

Please consider the following two cases:

1. $X=\left\{\left(x_{1}, x_{2}\right) \mid-30 \leq x_{1} \leq 30,-10 \leq x_{2} \leq 10\right\}$
2. $X=\left\{\left(x_{1}, x_{2}\right) \mid-x_{1}+2 x_{2}=-20\right\}$

It is encouraged that the students to change the value of the step γ (e.g., $\gamma=$ $0.1,1,10)$ as well as to test different starting points x_{0}. Besides, please compare the performance of the algorithm with and without preconditioning.

