Interior Point Method

Assigned to: Saeedmanesh Mohammadreze, Kyriaki Goulouti, Pisaroni Michele, Cuendet Gabriel Louis

February 26, 2014

General description of the algorithm

Objective

Find the global minimum of a linear optimization problem in standard form:

$$
\min _{x \in X \subseteq \mathcal{R}^{n}} c^{T} x
$$

where $X=\{x \mid A x=b, x \geq 0\}$.

Input

- Matrix $A \in \mathcal{R}^{m \times n}$
- Vector $b \in \mathcal{R}^{m}$
- Cost vector $c \in \mathcal{R}^{n}$
- Initial solution $\left(x_{0}, \lambda_{0}, \mu_{0}\right)^{T}$, s.t., $A x_{0}=b, A^{T} \lambda_{0}+\mu_{0}=c, x_{0}>0, \mu_{0}>0$
- Initial value for the barrier's height $\epsilon_{0}>0$
- Precision $\bar{\epsilon} \in \mathcal{R}, \bar{\epsilon}>0$

Iterations

1. Compute $\left(d_{x}, d_{\lambda}, d_{\mu}\right)$ by solving:

$$
\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
S_{k} & 0 & X_{k}
\end{array}\right]\left[\begin{array}{c}
d_{x} \\
d_{\lambda} \\
d_{\mu}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-X_{k} S_{k} e+\epsilon_{k} e
\end{array}\right]
$$

where $e=(1,1, \ldots, 1)^{T}$ and

$$
X_{k}=\left[\begin{array}{ccccc}
x_{k, 1} & 0 & \ldots & 0 & 0 \\
0 & x_{k, 2} & \ldots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \ldots & x_{k, n-1} & 0 \\
0 & 0 & 0 & 0 & x_{k, n}
\end{array}\right], S_{k}=\left[\begin{array}{ccccc}
\mu_{k, 1} & 0 & \ldots & 0 & 0 \\
0 & \mu_{k, 2} & \ldots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \ldots & \mu_{k, n-1} & 0 \\
0 & 0 & 0 & 0 & \mu_{k, n}
\end{array}\right]
$$

2. Compute a step $0<\alpha_{k} \leq 1$ such that

$$
\left(x_{k+1}, \lambda_{k+1}, \mu_{k+1}\right)^{T}=\left(x_{k}, \lambda_{k}, \mu_{k}\right)^{T}+\alpha_{k}\left(d_{x}, d_{\lambda}, d_{\mu}\right)^{T}
$$

is strictly feasible, i.e., $\left(x_{k+1}, \lambda_{k+1}, \mu_{k+1}\right) \in \mathcal{S}$, where

$$
\mathcal{S}=\left\{(x, \lambda, \mu) \mid A x=b, A^{T} \lambda+\mu=c, x \geq 0, \mu \geq 0\right\}
$$

3. Update the barrier's height by defining ϵ_{k+1}
4. $k=k+1$

Stopping criterion

$\frac{1}{n} x_{k}^{T} \mu_{k} \leq \bar{\epsilon}$

Algorithm testing \& analysis

The sutdents will implement and apply the above algorithm to the following problem (with $n=10$):

$$
\begin{gathered}
\min -\sum_{i=1}^{n} 2^{n-i} x_{i} \\
x_{1} \leq 5 \\
4 x_{1}+x_{2} \leq 25 \\
8 x_{1}+4 x_{2}+x_{3} \leq 125 \\
\vdots \\
2^{n} x_{1}+2^{n-1} x_{2}+\ldots+4 x_{n-1}+x_{n} \leq 5^{n} \\
x_{1}, x_{2}, \ldots, x_{n} \geq 0
\end{gathered}
$$

Please describe your procedures to obtain an initial solution $\left(x_{0}, \lambda_{0}, \mu_{0}\right)^{T}$ and it is encouraged that the students to test the algorithm by adopting different barrier height updating strategies (satisfying $0<\epsilon_{k+1}<\epsilon_{k}$ and $\lim _{k} \epsilon_{k}=0$). Besides, please give an intuitive explaination on why your obtained solutions is optimal. In other words, can you solve the above problem without resorting to any solving algorithm?

