Augmetned Lagrangian Method

Assigned to: Stefano Moret, Wallerand Anna Sophia, Stephane Bungener, Rujeerapaiboon Napat

February 26, 2014

General description of the algorithm

Objective

Find the local minimum of the non-linear optimization problem:

$$
\min _{x \in \mathcal{R}^{n}} f(x)
$$

such that $h(x)=0$.

Input

- Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}$, two-times differentiable
- Gradient $\nabla f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n}$
- Hessian $\nabla^{2} f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times n}$
- Function $h: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}$, two-times differentiable
- Gradient $\nabla h: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times m}$
- Hessian $\nabla^{2} h_{i}: \mathcal{R}^{n} \rightarrow \mathcal{R}^{n \times n}$ for every constraint $i=1, \ldots, m$
- Initial solution $\left(x_{0}, \lambda_{0}\right)$
- Initial penalty parameter c_{0}
- Precision $\epsilon \in \mathcal{R}, \epsilon>0$

Initialization

$$
k=0, \tau=10, \alpha=0.1, \beta=0.9, w_{0}=1 / c_{0}, \eta_{0}=0.1, \hat{\eta}_{0}=\eta_{0} c_{0}^{\alpha}
$$

Iterations

1. Use the Newton method with linesearch for solving $x_{k+1}=\arg \min _{x \in \mathcal{R}^{n}} L_{c_{k}}\left(x, \lambda_{k}\right)$ where

$$
L_{c_{k}}\left(x, \lambda_{k}\right)=f(x)+\lambda_{k} h(x)+\frac{c_{k}}{2}\|h(x)\|^{2}
$$

using starting point x_{k} and precision w_{k}
2. If $\left\|h\left(x_{k}\right)\right\| \leq \eta_{k}$, then update multipliers:

$$
\lambda_{k+1}=\lambda_{k}+c_{k} h\left(x_{k}\right), c_{k+1}=c_{k}, w_{k+1}=w_{k} / c_{k}, \eta_{k+1}=\eta_{k} / c_{k}^{\beta}
$$

3. If $\left\|h\left(x_{k}\right)\right\|>\eta_{k}$, then update penalty parameter:

$$
\lambda_{k+1}=\lambda_{k}, c_{k+1}=\tau c_{k}, w_{k+1}=w_{0} / c_{k+1}, \eta_{k+1}=\hat{\eta}_{0} / c_{k+1}^{\alpha}
$$

4. $k=k+1$

Stopping criterion

$\left\|\nabla L\left(x_{k}, \lambda_{k}\right)\right\| \leq \epsilon$ and $\left\|h\left(x_{k}\right)\right\| \leq \epsilon$

Algorithm testing \& analysis

The sutdents will implement and apply the above algorithm to the following problem:

$$
\begin{gathered}
\min _{x \in \mathcal{R}^{2}} \quad \ln \left(1+x_{1}^{2}\right)-x_{2} \\
\left(1+x_{1}^{2}\right)^{2}+x_{2}^{2}=4 \\
-4 \leq x_{1} \leq 4 \\
-4 \leq x_{2} \leq 4
\end{gathered}
$$

Note that the students need to transform the above problem to the required format, i.e., $\min _{x \in \mathcal{R}^{n}} f(x)$ s.t., $h(x)=0$. It is encouraged that the students to change the value of c_{0} (e.g., $c_{0}=1,10,100$) and analyze its impact on the algorithm. The suggested starting point for the above question is $x_{0}=[2,2]$.

