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Abstract

Network design problems concern the selection of arcs in a graph in order to satisfy, at minimum cost, some
.ow requirements, usually expressed in the form of origin–destination pair demands. Benders decomposition
methods, based on the idea of partition and delayed constraint generation, have been successfully applied to
many of these problems. This article presents a review of these applications.
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1. Introduction

Network design problems are central to a large number of contexts including transportation,
telecommunications and power systems. The idea is to establish a network of links (roads, op-
tical %bers, electric lines, etc.) that enables the .ow of commodities (people, data packets, elec-
tricity, etc.) in order to satisfy some demand characteristics. We are particularly interested in
&xed-charge network design problems, where, in order to use a link, one must pay a %xed cost
representing, for example, the cost of constructing a road, or installing an electric
line, etc.

A large number of practical applications may be represented by %xed-charge network design
models. One important area is the service network design problem which arise, for example, in
airline and trucking companies. The idea is to maximize the pro%t by setting routes and schedules,
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given some resource constraints. For example, airline companies must determine the covered routes
and the frequency of the .ights considering aircraft and crew availability [1]. Similarly, express
package delivery companies (e.g., UPS, Fedex) must establish routes, assign aircraft to them and
decide about the .ow of packages [2].

Various applications can also be found in telecommunications. Examples are the design of a local
access network with one or two technologies [3,4], the project of a terminal layout [5,6], and the
interconnection of existing networks [7].

In power systems, %xed-charge network design is used to plan the energy transmission from
the generation plants to the consumer centers [8,9] and the energy distribution inside these centers
[10,11]. In the latter case, network models can also be used in an operational context to obtain the
con%guration that minimizes daily loss costs [12].

In all these problems, a proper design can yield better operation levels and cost reductions. The
total amount of these reductions is obviously related to each speci%c problem. However, the eco-
nomical importance of most of the cited problems and the key role played by the network design in
the systems operation suggest that the savings can be signi%cant. For example, Standard and Poor’s
[13] estimates the revenues of package delivery industry as 52 billions US$ only in the United
States.

Probably because of the economical importance of the associated problems, several solution
methodologies for network design problems are available. These range from pure heuristic methods
to optimal implicit enumeration. Amongst the most successful solution approaches we %nd Benders
decomposition [14]. The basic idea behind this method is to decompose the problem into two simpler
parts: the %rst part, called master problem, solves a relaxed version of the problem and obtain values
for a subset of the variables. The second part, called auxiliary problem (or subproblem), obtains
the values for the remaining variables while keeping the %rst ones %xed, and uses these to generate
cuts for the master problem. The master and auxiliary problems are solved iteratively until no more
cuts can be generated. The conjunction of the variables found in the last master and subproblem
iteration is the solution to the original formulation.

The structure of %xed-charge network design problems presents a natural decomposition scheme for
the Benders approach: the variables representing the opening of the links are solved in the master
problem while the ones representing the actual .ow of commodities are kept in the subproblem.
Therefore, at each iteration the master solution gives a tentative network for which the subproblem
%nds the optimal .ow of commodities.

Due to the need to solve the master and the auxiliary problems several times, the decomposition
approach is only reasonable if these problems can be solved eJciently. This is the case for network
design problems, where most of the times, it is much easier to solve the decomposed problems
than the original one. Moreover, especially for the subproblem, it is sometimes possible to proceed
with further decomposition (by commodity, by period, etc.), resulting in even more eJcient solu-
tion methods. All this makes Benders decomposition a competitive methodology for this family of
problems.

In this article we review the use of Benders decomposition in %xed-charge network design. In
Section 2, we present the Benders decomposition approach in further detail. Then, in Section 3
we present the diKerent %xed-charge network problems and a survey of the application of Ben-
ders decomposition algorithms to these models. Section 4 closes the paper with a summary and
conclusions.
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2. Benders decomposition

Benders decomposition [14] is a classical solution approach for combinatorial optimization prob-
lems, based on the ideas of partition and delayed constraint generation. Examples of successful
applications of this methodology to mixed-integer problems are abundant. We cite, for example, the
seminal paper of GeoKrion and Graves [15] on multicommodity distribution network design and the
extensions presented by Cordeau et al. [16] on the same problem. Other applications include the
locomotive and car assignment problem [17–19], the large-scale water resource management problem
[20], and the two stage stochastic linear problem [21].

The method partitions the model to be solved into two simpler problems, named master and
auxiliary problems. The master problem is a relaxed version of the original problem, containing
only a subset of the original variables and the associated constraints. The auxiliary problem is the
original problem with the variables obtained in the master problem %xed.

In the case of the %xed-charge network design problem, the master deals with the integer variables
that de%ne the network while the subproblem works with the continuous variables representing the
actual .ow of commodities for the tentative network obtained in the master problem. Consider, for
example, the general formulation presented below, which encompasses most %xed-charge network
design models proposed in the literature:
General &xed-charge network design formulation:

Minimize cx + dy (1)

subject to Ax + By¿ b; (2)

Dy¿ e; (3)

x¿ 0; y¿ 0 and integer: (4)

Vectors x and y are the continuous and integer variables, respectively, while c and d are the
row vectors of the associated costs. Matrices A; B and D and vectors b and e have the appropriate
dimensions. This problem can be expressed as

min
My∈Y {d My + min

x¿0
{cx :Ax¿ b− B My}}; (5)

where Y ={y |Dy¿ e; y¿ 0 and integer}. The inner minimization is a linear program. Associating
dual variables u to constraints Ax¿ b− B My, we can write the dual version of this problem as

max
u¿0

{u(b− B My) : uA6 c}: (6)

This is the Benders decomposition subproblem. Using duality theory, the primal and dual formu-
lations can be interchanged. Therefore, (5) can be rewritten as

min
My∈Y {d My + max

u¿0
{u(b− B My) : uA6 c}}: (7)

Note that the feasible space of the subproblem (inner maximization) is independent of the choice
made for variables y. Let F = {u | u¿ 0; uA6 c} represent this feasible space. We assume that
F is not empty for it would correspond to a primal problem either infeasible or unbounded. F is
therefore composed of extreme points up (for p= 1; : : : ; P) and extreme rays rq (for q= 1; : : : ; Q).
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The solution of the subproblem can be either bounded or unbounded. In the %rst case, the solution
is one of the extreme points up (p=1; : : : ; P). In the latter situation, there is a direction rq for which
rq(b−B My)¿ 0. The unbounded situation results in an unfeasible primal problem and must be avoided.
We must therefore eliminate the values of My that would yield an unbounded inner dual problem.
This is done by explicitly considering the restrictions

rq(b− B My)6 0; q= 1; : : : ; Q: (8)

With this restrictions in the external formulation, the maximum value of the inner problem is the
value of one of the extreme points of F . Problem (7) becomes

min
My∈Y {d My + max{up(b− B My) : p= 1; : : : ; P}}

s:t rq(b− B My)6 0; q= 1; : : : ; Q; (9)

or, with the use of an auxiliary continuous variable z:

Minimize dy + z (10)

subject to z¿ up(b− B My); p= 1; : : : ; P; (11)

rq(b− B My)6 0; q= 1; : : : ; Q; (12)

y∈Y; z¿ 0: (13)

Formulation (10)–(13) is called the Benders reformulation and its drawback is that the number
of extreme points and extreme rays is usually extremely large. To overcome this limitation, Benders
proposed to delay the generation of constraints (11) and (12). Initially, only constraints (13) are
considered, yielding the %rst master problem:

Minimize dy + z (14)

subject to y∈Y; z¿ 0: (15)

This problem is a relaxed version of (10)–(13) and therefore the objective value dy+z is a lower
bound to the original problem. Once this problem is solved, a tentative con%guration of variables y
is used in subproblem (6). This subproblem is solved and the result is either unbounded, in which
case a constraint of type (12) is inserted in the master, or it is an extreme point. In the latter
situation, the conjunction of the solution of the master with the primal solution of the subproblem
provides a complete solution (upper bound) to the original problem, while the dual solution of the
subproblem is used to generate a constraint of type (11), which is also inserted in the master.

The master and the auxiliary problems are solved iteratively, until the upper and lower bounds
are suJciently close. Because of this iterative constraint generation scheme, Benders decomposition
can be regarded as sort of a “dual version” of Dantzig–Wolfe column-generation: the application of
Dantzig–Wolfe column generation to the dual of the original problem.

Several extensions have been proposed for the Benders decomposition method. One of the most
important ones is presented by GeoKrion [22] who suggests a “generalized Benders decomposition”
approach. GeoKrion makes use of non-linear duality theory and extends the Benders method to
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the case where the subproblem is a convex optimization problem. This development enables the
application of Benders decomposition to a whole new set of problems, particularly those where the
joint problem is generally non-convex but can be made convex by %xing one set of variables. Values
for these variables are therefore obtained in the master problem and %xed in the subproblem which
then becomes a convex optimization problem for which many optimization methods are available.

Magnanti and Wong [23] have studied the in.uence of cuts in a Benders decomposition algo-
rithm. They showed that the use of stronger cuts, when available, may have a great impact in the
convergence of the algorithm by reducing the number of iterations. The idea is simple. Many times
the solution of subproblem (6) is not unique. Indeed, for network design problems this is usually
true, since the subproblems are variations of shortest route, transshipment and other network op-
timization problems, known for their degeneracy. Therefore, one can try to judiciously choose the
dual variables in order to obtain better cuts. To determine what is a better cut the authors use the
notion of dominance: for the presented reformulation of problem (1)–(4), a cut generated from the
extreme point u1 dominates a cut generated from the extreme point u2 if

u1(b− B My)¿ u2(b− B My) (16)

for all My∈Y with strict inequality for at least one point. A cut that is dominated by no other cut
is Pareto-optimal. Let Y LP be the polyhedron de%ned by the linear relaxation of Y , and ri(Y LP) be
the relative interior of Y LP. The following problem yields a Pareto-optimal cut for the case of the
general problem (1)–(4):

Maximize u(b− Byo) (17)

subject to uA6 c; (18)

v( My) = u(b− B My); (19)

u¿ 0; (20)

where yo ∈ ri(Y LP) and v( My) is the optimal value of subproblem (6) when variables y are %xed in
My. The objective function maximizes the strength of the cut for yo while the constraints de%ne the
feasible space as the optimal solutions of the original subproblem.

The authors also analyze the impact of diKerent formulations on the performance of a Benders
decomposition algorithm. The conclusion is that two diKerent formulations for a problem can yield
very diKerent performances. In fact, tighter formulations yield stronger Benders cuts, to the extent
that for the Convex Hull formulation, only one cut is needed. However, adding constraints to a
formulation not only strengthens the Benders cuts but also complicates the solution of the linear
subproblems, yielding a trade-oK between the quality of the Benders cuts and the computational
eKort needed to solve the subproblems.

In a later work, Magnanti et al. [24] have extended the study to the context of the uncapacitated
network design problem. They showed the generality of Benders decomposition by proving that some
known cuts [25–28] are actually Benders cuts for particular choices of the integer variables (the ten-
tative network con%guration). Moreover, they showed that in this particular case, Pareto-optimal cuts
can be generated at the price of solving k minimum cost 8ow problems (one for each commodity).
The authors also advocate the use of Benders decomposition in conjunction with other approaches,
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based on their own experience with the use of a dual-ascent method, as will be seen in the next
section.

3. Literature review

Network design problems concern the selection of arcs in a graph in order to satisfy, at minimum
cost, some .ow requirements usually expressed in the form of origin–destination pair demands (for
surveys of these problems see Magnanti and Wong, [28], Minoux, [29] and Balakrishnan et al.
[30]). The &xed-charge network design problem (FNDP) has the particularity that each arc has an
associated %xed-cost which must be paid if the arc is part of the solution.

In this section we present a review of the Benders decomposition algorithms proposed for the
FNDP. We organize our presentation according to the diKerent problems. First, we characterize the
models as uncapacitated or capacitated, and we then enumerate the most common problems within
each category.

The idea is to present diKerent versions of %xed-charge network design problems, giving for each
one, a mathematical formulation and general comments on the applications of Benders decomposition
methods for that problem found in the literature.

Concerning the mathematical developments, we note that there are two main types of formulations
that are used in the literature: node-arc and arc-path models. For ease of presentation, we concentrate
on node-arc models and we develop the arc-path model only for the last and more general case of
Section 3.2.3.

In all developments we denote by G(N; A; K) an undirected graph where N is the set of nodes,
A is the set of edges, and K is the set of commodities to be transported (people or goods, data
packets, electric power, etc.). Variables xkij represent the actual .ow of commodity k going from
node i to node j, and variables yij are integer variables associated with the utilization of the link
(uncapacitated case) or to its capacity (capacitated case).

Note that, although the graph is undirected, it makes sense to de%ne both variables xkij and xkji,
because the .ow itself is directed. Thus, we consider that an edge in A is doubly represented by the
arcs (i; j) and (j; i). However, whenever we refer to the integer variables (or their coeJcients) we
assume that only the edge (i; j) with i¡ j is considered.

3.1. Uncapacitated network design problems (UNDP)

We %rst consider uncapacitated network design problems. In these problems, there is no limit
on the .ow that can circulate through the selected links. Many real-life applications may be well
represented by such models [4,5,31].

3.1.1. The origin–destination pairs UNDP
We start with the origin–destination pairs uncapacitated network design problem. In this case,

to each commodity k = 1; : : : ; |K | is associated a demand dk , an origin node O(k) and a destination
node D(k). In some cases, the %xed costs fully represent the real cost of the network, i.e., there is
no volume cost associated with the .ow of a commodity on one link (see, e.g., [32], and references
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therein). However, in order to appropriately model some problems, one must sometimes include
volume-based costs, as in the work of Randazzo et al. [4].

Using the notation introduced at the beginning of the section, we present below one formulation
for this class of problems:

(F1) Origin–destination pairs UNDP formulation:

Minimize
∑

(i; j)∈A

(∑
k∈K

ckijx
k
ij + fijyij

)
(21)

subject to
∑

j | (i; j)∈A
xkij −

∑
j | ( j; i)∈A

xkji =



dk; i = O(k); ∀k ∈K;
0; i �∈ {O(k); D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(22)

xkij6dkyij; ∀(i; j) ∈A; ∀k ∈K; (23)

xkij¿ 0; ∀(i; j) ∈A; ∀k ∈K; (24)

yij ∈ {0; 1}; ∀(i; j) ∈A: (25)

Variables yij are associated with the construction of link (i; j) ∈A :yij = 1 if (i; j) belongs to the
%nal solution, otherwise yij = 0. The objective function (21) is the sum of variable and %xed costs.
In this function, ckij is the linear cost associated with the .ow of one unit of commodity k through
link (i; j) and fij is the %xed cost associated with the selection of link (i; j) in the %nal solution.
Some non-linear versions of this function can be considered by “generalized Benders decomposition”
(see, for example, the work of Hoang [33] later on this section or the design of electrical networks
in Section 3.2.3). However, for simplicity, we concentrate on linear objective functions.

The set of restrictions (22) ensure that the .ow of commodity k leaves the origin node O(k) and
arrives at the destination node D(k), and are also responsible for .ow conservation. Constraints (23)
limit the .ow of commodities to selected arcs, constraints (24) de%ne the non-negativity of variables
xkij, and constraints (25) impose the integrality of variables yij. Constraints (23) can be substituted
by aggregate constraints, in the form∑

k∈K
xkij6

(∑
k∈K

dk

)
yij; ∀(i; j) ∈A: (26)

This aggregation can substantially reduce the number of constraints. However, as discussed in the last
section, it has been shown that the Benders cuts obtained with disaggregated (tighter) formulations
are more eJcient than the ones obtained with aggregated ones [24].
Application of Benders decomposition: The basic uncapacitated case was solved via Benders de-

composition in an early work of Magnanti et al. [24]. There, the master problem proposes a tentative
network by setting the integer variables and the subproblem %nds the continuous variables .ow dis-
tribution. The authors use a set of instances of up to 30 nodes and 130 arcs to prove two points:
(i) that the use of auxiliary techniques can improve the performance of the Benders decomposition
(in this case, a preprocessing based on a dual-ascent procedure in order to eliminate variables),
and (ii) that the intelligent choice of cuts, speci%cally the Pareto-optimal cuts (see Section 2),
can strongly aKect the performance of the algorithm.
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The work of Magnanti et al. was extended ten years later by Gutierrez et al. [34], who proposed
a robust approach able to consider the uncertainty in the transportation costs ckij and in the demands
dk . The data uncertainty is described though a set of scenarios, each one with diKerent values for
ckij. Note that, since the authors deal with the uncapacitated case, the changes in ckij may re.ect both
changes in the cost itself or in the demand (with the appropriate scaling). The solution of the model
is done via a multi-master Benders algorithm, where an individual master problem is associated with
each possible scenario. Each time a master problem is solved, there is a cross generation of Benders
cuts, i.e., the subproblem generates a cut for each of the master problems. The authors use a set of
instances based on the one presented by Magnanti et al. [24] with 11 scenarios for each original
problem and conclude that the cross-generation of Benders cuts accelerates the convergence of the
algorithm.

An interesting version of the uncapacitated network design problem with one facility has been
proposed by Hoang [33]. The author develops a formulation of this problem with non-linear costs.
The objective is to select among several projects (each corresponding to a set of investments in
the network) respecting some budget constraints. In this case, no explicit upper bounds on the arc
capacities like (23) exist: they are indirectly accounted for by the convexity in the cost functions.
Generalized Benders decomposition is used, together with a Lagrangian heuristic to solve the master,
and a convex cost multicommodity algorithm [35] is applied to the solution of the subproblem. Two
instances are successfully solved, the largest one having 155 nodes, 376 arcs and 720 commodities.

3.1.2. The single-origin UNDP (local access network design)
An important special case of the problem presented in Section 3.1.1 is where all demand points

must be connected to a single origin. This is the situation, for example, in the design of local access
networks (LAN) [3,36]. When the objective function is well represented only by the variable costs,
the LAN Design can be formulated as the easy single-source transshipment problem. On the other
hand, if there are only %xed-charge costs, it becomes an NP-hard Steiner problem, or a minimum
spanning tree problem (if all the nodes must be reached). In the latter case, an important situation
is where the number of links connecting directly or indirectly to the source is limited. This problem
is known as the capacitated minimum spanning tree problem [5,6] (we classify this problem as
uncapacitated since the .ow on the arc itself is not subject to any upper bound).

We present a mathematical formulation for the general case where each link has a %xed and
variable associated cost. In (F2) we consider each demand as a diKerent commodity, with diKerent
transportation costs ckij that are dependent both on the link and on the commodity. Node O is the
origin for all the commodities.

(F2) Single-origin UNDP formulation:

minimize
∑

(i; j)∈A

(∑
k∈K

ckijx
k
ij + fijyij

)
(27)

subject to
∑

j | (i; j)∈A
xkij −

∑
j | ( j; i)∈A

xkji =



dk; i = O; ∀k ∈K;
0; i �∈ {O; D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(28)

xkij6dkyij; ∀(i; j) ∈A; ∀k ∈K; (29)
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xkij¿ 0; ∀(i; j) ∈A; ∀k ∈K; (30)

yij ∈ {0; 1}; ∀(i; j) ∈A: (31)

Besides the fact that all commodities are now originating at one single-origin node, (F2) is identical
to (F1). However, the presence of a single-origin node yields a simpli%ed formulation for the case
where the variable costs are independent on the commodity. (F′

2) presents this simpli%ed single-origin,
single-commodity formulation.

(F′
2) Single-origin, single-commodity UNDP formulation:

Minimize
∑

(i; j)∈A
(cijxij + fijyij) (32)

subject to
∑

j | (i; j)∈A
xij −

∑
j | ( j; i)∈A

xji =

{
D; i = O;

−di; i �= O;
(33)

xij6Dyij; ∀(i; j) ∈A; (34)

xij¿ 0; ∀(i; j) ∈A; (35)

yij ∈ {0; 1}; ∀(i; j) ∈A: (36)

The parameter di represents the demand at each node and D is the sum of the demands in all
nodes excluded the origin. The objective function (32) of formulation (F′

2) still minimizes the sum
of %xed and variable costs. However, there is no need for a diKerentiation among commodities. The
only requirement is that the correct amount of .ow leaves the node origin and reaches each one of
the demand nodes, which is ensured by constraints (33). Constraints (34) still forbid the .ow in
closed links.

As pointed out by Magnanti and Wong [23], selecting the proper formulation is an important
factor that aKects the computational performance of Benders decomposition. In this case, we note
that since constraints (34) of formulation (F′

2) make use of the sum of all the demands D, they
are an equivalent of the aggregated constraints presented in (26). Therefore, we should expect this
formulation to be weaker than formulation (F2), which uses the disaggregated constraints as expressed
in (29).
Application of Benders decomposition: Randazzo and Luna [3] present a comparison of a

Lagrangean relaxation-based branch-and-bound, a branch-and-cut and a Benders decomposition meth-
odologies for the LAN design problem presented in this section. Prior to the Benders decomposi-
tion, the authors use a linear relaxation and a shortest-path algorithm to obtain a feasible solution,
which is used to generate initial values for the dual variables. Redundant strengthening constraints
are used in the master, to increase the probability of generating a feasible solution. The subproblem
is decomposed into k easy network .ow problems, one for each commodity. Benders decomposition
outperformed the two other methods on three small sets of instances. Perhaps the most important
conclusion obtained by the authors is the fact that Benders decomposition, although slower than the
branch-and-cut on six of the 30 instances, was the only algorithm able to solve to optimality all
instances within the limit time (24 h), leading to the idea that it is a more robust method.
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In an earlier article, Gavish [37] has presented a Benders decomposition algorithm for the capac-
itated minimal spanning tree problem. The algorithm is rather standard: the master problem %xes
the integer variables yielding two situations (i) the selected edges form a spanning tree: then, either
the solution is optimal (if the number of links connecting to the source respects the limit) or the
links connected to the source can be used to generate a cut and solve the master problem again, (ii)
the graph is not connected, in which case a cut can be generated and the master problem is solved
again. The algorithm was tested on networks containing up to 12 nodes. The number of generated
cuts was very large, resulting in a poor performance of the algorithm.

3.1.3. The two-technologies single-origin UNDP (two technologies local access network design
problem)

A third common situation in uncapacitated network design problems is the case where two tech-
nologies, each having their own advantages, are available [4,31,38]. One technology may have a
larger %xed-cost but a smaller variable cost and vice versa (as happens with optical %bers and
copper in telecommunications networks).

The formulation is an extension of formulation (F2), with the duplication of variables xkij and yij.
Therefore, in (F3); yijt is the binary variable associated with the construction of the link (i; j) with
technology t. Analogously, xkijt is the .ow of commodity k through that link.

(F3) Two-technologies single-origin UNDP formulation:

Minimize
∑

(i; j)∈A

2∑
t=1

(∑
k∈K

ckijtx
k
ijt + fijtyijt

)
(37)

subject to
2∑
t=1


 ∑
j | (i; j)∈A

xkijt −
∑

j | ( j; i)∈A
xkjit


=



dk; i = O; ∀k ∈K;
0; i �∈ {O; D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(38)

xkijt6dkyijt ; ∀(i; j) ∈A; ∀k ∈K; t = 1; 2; (39)

2∑
t=1

yijt6 1; ∀(i; j) ∈A; (40)

xkijt¿ 0; ∀(i; j) ∈A; ∀k ∈K; t = 1; 2; (41)

yijt ∈ {0; 1}; ∀(i; j) ∈A; t = 1; 2: (42)

In (F3), the goal (37) is to minimize the sum of variable and %xed costs for both technologies. This
must be done while respecting the demand requirements (38) and the fact that, for both technologies,
there can only be .ow in a link if the link is open (39). Each link uses a single technology, as
expressed by constraints (40).

We observe that (F3) is the most complete of the four formulations. In fact, (F1); (F2) and (F′
2)

can all be regarded as special cases of (F3). Moreover, (F3) easily adapts to the case where more
technologies are available (although the case with two technologies is the most common in practice).

Straightforward extensions of (F3) include models that require a cost for connecting links with
diKerent technologies. These models are useful for the common situation where extra equipment is
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needed to perform the connection. Other models may be used to limit the number of such connections
or restrict the nodes where it may take place.

Additional restrictions may force some ‘primary nodes’ to be served by the ‘primary’ technol-
ogy [36]. Carneiro et al. [11] present an interesting application of this model for the problem of
designing power distribution secondary networks. In this case, all the demand must be supplied by
the ‘secondary’ technology. However, it is still advantageous to use the primary technology (in this
case, the higher voltages) until very close to the demand points for it has much lower variable
costs. The conversion from the %rst technology to the second requires the installation of additional
equipment in the nodes of the network (electric transformers) and is limited to the capacity of these
transformers.
Application of Benders decomposition: Randazzo et al. [4] use Benders decomposition to solve

this problem. The algorithm is very similar to the one presented by Randazzo and Luna [3], but
without the use of linear relaxation. The %rst feasible solution is obtained by means of a shortest-path
algorithm considering only the variable costs. This initial solution is used to generate initial lower
and upper bounds. Additional constraints are used in the master in order to guarantee an arbores-
cent structure during its solution. The auxiliary subproblems are still easy network .ow problems
decomposable by commodity. The tests were conducted on a limited set of instances of up to 41
nodes (all instances could be solved to optimality with a linear relaxation model) for which Benders
decomposition was usually faster (especially for the bigger instances) than Cplex 3.0.

3.2. Capacitated network design problems (CNDP)

We now consider the capacitated network design problems. As before, .ow in a link is only
allowed if a %xed cost is paid. However, the amount of this .ow is limited to a certain capacity.
Examples of applications of CNDP frequently occur in the design of telecommunications networks
[39,40]. In this section, we analyze some of the most common models. These models are presented
in the next subsections and classi%ed according to the structure of the cost–capacity relationship.

3.2.1. The single-facility CNDP
The %rst CNDP to be considered is the single-facility CNDP. In this case, there is only one type

of technology, which can be installed multiple times on each link. Each unit of the facility installed
enables a given amount of .ow and has a given cost. Examples of this problem can be found in
Magnanti and Mirchandani [41] and [42].

In (F4) we present a mathematical formulation for the case with origin–destination pair demands.
(F4) Capacitated single-facility network design problem:

Minimize
∑

(i; j)∈A

(∑
k∈K

ckijx
k
ij + fijyij

)
(43)

subject to
∑

j | (i; j)∈A
xkij −

∑
j | ( j; i)∈A

xkji =



dk; i = O(k); ∀k ∈K;
0; i �∈ {O(k); D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(44)
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∑
k∈K

xkij6Cyij; ∀(i; j) ∈A; (45)

xkij¿ 0; ∀(i; j) ∈A; ∀k ∈K; (46)

yij ∈Z; ∀(i; j) ∈A: (47)

In (F4), there are two important modi%cations with respect to (F1). First, one single constraint
of type (45) is generated for each arc (instead of k constraints per arc). These constraints now
link the xkij variables together, as in constraints (26). Moreover, in the right-hand side of (45), dk
has been changed for C, the amount of capacity given by each unit of the purchased facility. The
second modi%cation is that constraints (46) indicate that yij is integer. These two modi%cations
enable the selection of an integer number of unities of the facility to be installed in each individual
link, therefore, giving the link the total capacity of yij × C.

Modi%cations in order to make (F4) a single-origin model analogous to the one presented in
Section 3.1.2 are straightforward and equivalent to those required in the uncapacitated case.
Application of Benders decomposition: Sridhar and Park [32] work with a version of this problem

that does not have variable costs. Besides the arc capacity constraints, their model also includes node
capacity constraints, in the form∑

j | (i; j)∈A

∑
k∈K

xkij +
∑

k |D(k)=i

dk6 #i ∀i; (48)

indicating that the node capacity #i must be greater or equal to all the .ow passing through, origi-
nating or ending at node i. The capacity #i of each node is a parameter determined by the desired
network performance. The model is solved using an embedded Benders enumeration algorithm, ini-
tiated with a lower bound given by a cutting plane algorithm based on two polyhedral cuts and
a feasible solution given by a heuristic algorithm [43]. The method is applied to instances of up
to 20 nodes and several demand levels, for which the Benders-and-cut approach outperformed a
conventional branch-and-bound.

Ouorou et al. [44] deal with a similar single-facility capacitated problem. In this case, however,
the demands are elastic, i.e., one of the goals of the optimization problem is to establish the optimal
demand levels (this can be done considering that the demands are dependent on the asked prices, as
is often the case in telecommunications systems). Another important diKerence is the fact that the
authors deal with a capacity expansion problem, i.e., there is already suJcient capacity installed and
the question is whether it may be advantageous to expand the capacity in order to serve consumers
who are willing to pay higher tariKs in exchange for better service levels. A generalized Benders
decomposition scheme is used, yielding a mixed-integer master problem that deals with the capacity
expansions and a convex network .ow auxiliary subproblem that solves the demand and .ow levels.
The algorithm chosen for solving the subproblems is an adaptation of the proximal decomposition
method [45] to the case of elastic demands which alternates between shortest path calculations and
primal-dual updates eJciently distributed among arcs and commodities. The authors solve instances
based on real-life data with up to 19 nodes, 68 arcs and 342 commodities and the results suggest
that Benders decomposition is an eKective strategy.
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3.2.2. The two-facility CNDP
The two-facility CNDP is the analogous capacitated model for the uncapacitated situation pre-

sented in Section 3.1.3. The extension here is that besides choosing the technology for each link, we
must also choose the capacity to be installed. This capacity must come in multiples of the unitary
facility capacity for the chosen technology. Therefore, given two technologies with two diKerent
unitary %xed-costs fij1 and fij2 and two diKerent unitary capacities C1 and C2, formulation (F5)
models the problem of %nding the cheapest network that supplies the demand requirements in the
form of origin–destination pair demands.

(F5) Two-facility CNDP formulation:

Minimize
∑

(i; j)∈A

2∑
t=1

(∑
k∈K

ckijtx
k
ijt + fijtyijt

)
(49)

subject to
2∑
t=1


 ∑
j | (i; j)∈A

xkijt −
∑

j | ( j; i)∈A
xkjit


=



dk; i = O(k); ∀k ∈K;
0; i �∈ {O(k); D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(50)

∑
k∈K

xkijt6Ctyijt ; ∀(i; j) ∈A; t = 1; 2; (51)

yijt6Utzijt ; ∀(i; j) ∈A; t = 1; 2; (52)

2∑
t=1

zijt6 1; ∀(i; j) ∈A; (53)

xkijt¿ 0; ∀(i; j) ∈A; ∀k ∈K; t = 1; 2; (54)

yijt ∈Z; ∀(i; j) ∈A; t = 1; 2; (55)

zijt ∈ {0; 1}; ∀(i; j) ∈A; t = 1; 2: (56)

Additional variables zijt are necessary to limit to one the number of technologies in a link. Variable
zijt equals 1 if the link (i; j) has technology t installed and equals 0 otherwise. The coeJcient Ut is
the maximum number of units of capacity t that can be installed on a link.

The objective function (49) minimizes the sum of variable and %xed costs for both technologies.
The demand requirements are supplied by one of the two technologies as stated by (50). Constraints
(51) enforce the capacity limits and constraints (52) in conjunction with (53) ensure that only one
type of technology may be installed in each individual link. The de%nition of xkijt as positive, yijt as
integer and zijt as binary variables is eKected by constraints (54), (55) and (56), respectively.

Magnanti et al. [46] report a very similar case in the design of private communication networks.
In this case, both technologies may coexist in a link, having their capacities added up. Therefore,
there is no need for the additional zijt variables nor for constraints (52) and (53). The technology
index t may be also dropped from variables xkij. Constraints (51) are therefore replaced by∑

k∈K
xkij6C1yij1 + C2yij2; ∀(i; j) ∈A: (57)

As in the last subsection, the conversion of (F5) into a single-origin model is straightforward.
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Fig. 1. Step-increasing cost × capacity function.

We are not aware of any authors that have used Benders decomposition to solve the problem
presented in this section.

3.2.3. The step-increasing cost CNDP
The last and more general case is the step-increasing cost CNDP [47–49]. Here, the cost of

purchasing capacity for a link is given by a step-increasing cost-capacity function. Formulation (F6)
models this last case. This formulation creates additional binary variables to cope with the cost–
capacity function discontinuities. In (F6), Ct is the allowed capacity of a link if that link is in the
tth level of the cost function (refer to Fig. 1) and T is the total number of these levels.

(F6) The step-increasing cost network design problem (node-arc formulation):

Minimize
∑

(i; j)∈A

(∑
k∈K

ckijx
k
ij +

T∑
t=1

fijtyijt

)
(58)

subject to
∑

j | (i; j)∈A
xkij −

∑
j | ( j; i)∈A

xkji =



dk; i = O(k); ∀k ∈K;
0; i �∈ {O(k); D(k)}; ∀k ∈K;
−dk; i = D(k); ∀k ∈K;

(59)

∑
k∈K

xkij6
∑
t

Ctyijt ; ∀(i; j) ∈A; (60)

T∑
t=1

yijt6 1; ∀(i; j) ∈A; (61)

xkij¿ 0; ∀(i; j) ∈A; ∀k ∈K; (62)

yijt ∈ {0; 1}; ∀(i; j) ∈A; t = 1; : : : ; T: (63)



A.M. Costa / Computers & Operations Research 32 (2005) 1429–1450 1443

Again, the objective function is to minimize the sum of variable and %xed costs, as expressed
by (58). Constraints (59) guarantee that the demand requirements will be satis%ed while constraints
(60) limits the .ow on each link according to the purchased capacity. Constraints (61) state that
only one variable yijt may be selected, for these variables indicate the purchased capacity level, as
shown in Fig. 1.

It is usual to express the node-arc formulation (F6) as an equivalent arc-path formulation. In this
case, let P(k) be the set of possible paths between nodes O(k) and D(k). The coeJcient akp(i; j)

equals 1 if the commodity k .owing on path p uses arc (i; j), and akp(i; j) = 0, otherwise. Also let
nkp be the .ow of commodity k on path p. Formulation (F′

6) presents an arc-path formulation for
this last case.

(F′
6) The step-increasing cost network design problem (arc-path formulation):

Minimize
∑

(i; j)∈A

(∑
k∈K

ckijx
k
ij +

T∑
t=1

fijtyijt

)
(64)

subject to xkij =
∑
p

akp(i; j)nkp; ∀(i; j) ∈A; ∀k ∈K; (65)

∑
p

npk = dk; ∀k ∈K; (66)

∑
k∈K

xkij6
∑
t

Ctyijt ; ∀(i; j) ∈A; (67)

T∑
t=1

yijt6 1; ∀(i; j) ∈A; (68)

nkp¿ 0; ∀k ∈K; ∀p∈P; (69)

xkij¿ 0; ∀(i; j) ∈A; ∀k ∈K; (70)

yijt ∈ {0; 1}; ∀(i; j) ∈A; t = 1; : : : ; T: (71)

Here, xkij still represents the .ow on each arc. Constraints (65) de%ne the .ow of a commodity
on an arc as the sum of the .ows of that commodity on all paths that use that arc. Equalities (66)
are the demand constraints and inequalities (67) are the capacity constraints. Constraints (68) still
state that only one variable yijt may be selected.

Arc-path formulations can be used to generate a natural reduced version of the network design
problem by simply considering a limited number of paths for each origin–destination pair demand.
We have exempli%ed for (F6) but all the former formulations also have an equivalent arc-path
model.
Application of Benders decomposition: Gabrel et al. [48] deal with this problem by using a set of

metric inequalities to de%ne the feasible region. The idea is to de%ne a vector *=(*1; : : : ; *a; : : : ; *|A|) ∈
R|A|

+ . Then, +(*) denotes the quantity
∑K

k=1 dk × lk(*), where lk(*) is the length of a shortest
chain joining O(k) and D(k), when each arc in A is given the length *a¿ 0. Therefore, let y =
(y1; : : : ; ya; : : : ; y|A|) be the selected capacities on each link. This solution is feasible if and only if [50]
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for all *∈R|A|
+ , we have

|A|∑
a=1

*aya¿+(*): (72)

The authors then use these inequalities within a constraint generation approach where the master
problem consists of maximizing the objective function (58) while the subproblem generates the
violated metric inequalities (72). They also extend the approach with the generation of multiple
violated constraints by the use of bipartition inequalities (i.e., metric inequalities corresponding to
bipartitions of the node set |N |).

Mahey et al. [49] have modi%ed the problem of Gabrel et al. [48] to introduce the issue of quality
of service. Their version of the problem neglects the variable costs and uses an average delay function
that can be regarded as a measure of the level of service or of the reliability of the network. The
authors introduce variables n(i; j)c, the .ow of commodities in a link of capacity C. Therefore, the
average delay on arc (i; j) given by Kleinrock’s law (see e.g., Bertsekas and Gallager, [51]) is
proportional to the non-linear expression (n(i; j)c)=(C − n(i; j)c) which is introduced in the objective
function. The term is convex for a %xed capacity but not jointly convex in (C; n(i; j)c). Therefore, the
authors use a generalized Benders decomposition approach that obtains a solution for the variables
yijt in the master problem. The capacities are %xed in the auxiliary problem that reduces to a convex
cost multicommodity .ow problem, which is solved via a proximal decomposition method that works
as a separable augmented Lagrangean algorithm [45]. The auxiliary problem feeds the master problem
with feasibility and optimality cuts and the algorithm iterates until no more cuts can be generated and
the solution is proved to be optimal. The authors have also tested the eKect of additional cuts (e.g.,
connexity cuts and spanning tree cuts) and concluded that they could strongly reduce the number of
necessary iterations until convergence. The authors have tested instances derived from real private
communications networks and containing up to 25 nodes, 62 arcs and 500 commodities.

An important class of problems that can be modelled as step-increasing cost network design
problems is the planning of electric power transmission and distribution networks. In the power
systems transmission (distribution) design problem, the goal is to establish a minimum cost set of
transmission (distribution) lines in order to enable the .ow of one commodity—electrical power—
from the generation plants (substations) to the consumer centers.
Power systems transmission and distribution network design problems are generally non-convex.

However, once the integer variables are %xed, the remaining model becomes a convex transporta-
tion problem. Generalized Benders decomposition proposed by GeoKrion [22] is therefore a natural
solution approach, as argued in Section 2. Benchakroun et al. [52] use decomposition to solve the
multi-period power system distribution network design problem. It is basically the step-increasing
cost network design problem with the addition of several speci%c constraints related to the power
.ow characteristics, node capacities, radiality and voltage drop limits. A model with linear constraints
is proposed and solved via a generalized Benders decomposition. Gascon et al. [10] have improved
the method by developing a Lagrangean relaxation based heuristic procedure to solve the master
problem. Tests were conducted on examples of up to three periods, three sources (substations), ten
load locations and 31 admissible arcs which proved the quality of the method.

For the transmission network design problem, the application of the method goes back to Pereira
et al. [53]. The authors propose two models for the problem (one simpli%ed transportation model
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and a more sophisticated one including power .ow equations) and solve both of them via Benders
decomposition. When solving the second model the cuts generated for the simpli%ed one are kept.
The idea of keeping the cuts obtained for a simpli%ed model in the resolution of a more complex
formulation was extended by Romero and Monticelli [8,54] who proposed a three-phase hierarchical
heuristic approach that gradually increases the complexity of the model. For each level of complexity,
a solution is obtained via Benders decomposition and the cuts are propagated in the next phase.
Validations tests were conducted on a real-life network of 45 nodes. A similar algorithm with only
two phases is proposed by Oliveira et al. [55] and used to solve a real network of 79 bus (nodes)
and 155 circuits (arcs).

Tsamasphyrou et al. [56] introduced stochasticity in this problem by considering several availability
(on the lines and generation units) and demand scenarios. The authors carried tests on an IEEE
network of 24 nodes and 40 lines, considering cases of up to 2000 scenarios. Benders decomposition
was considered for cases ranging from the situation where a single cut was generated at each iteration
to the situation where, at each iteration, a cut was generated for each scenario. The authors concluded
that the best approach lied somewhere between these two extremes, and divided the scenarios into
a number (algorithm parameter) of sets, being one cut generated for each set of scenarios. This
strategy divided the computation times by a factor ranging from 1.8 (1000 scenarios) to 3.8 (2000
scenarios).

Binato et al. [9] solve the transmission network design with additional constraints to deal with
the power transmission stability problem. The authors make use of a disjunctive parameter in order
to cope with the non-selected candidate arcs. Benders decomposition had been proposed before for
this problem [57] but numerical problems caused by the large values of the disjunctive parameter
had limited the validity of the results. Binato et al. [9] have proposed a new scheme where the
disjunctive parameter is increased along the Benders iterations. Additional cuts are added at each
iteration based on relaxations of the auxiliary problem and on Gomory’s lifting procedure. A single
real network of 46 nodes and 237 candidate arcs was considered and the authors showed that the
proposed modi%cations helped reduce the computational time signi%cantly.

4. Summary and conclusions

Numerous practical applications can be formulated as network design problems. In these prob-
lems, the idea is to obtain a least cost network in order to satisfy some .ow constraints, commonly
expressed in the form of origin–destination demands. We have presented a review on Benders de-
composition methods applied to network design. Formulations for these problems usually contain one
set of integer variables associated with the selection of the arcs in the network, and one set of con-
tinuous variables associated with commodity .ows. This structure oKers a natural framework for the
decomposition approach which consists of isolating the integer variables in the master problem and
the .ow variables in the auxiliary subproblem. Moreover, the relative ease of solving the auxiliary
subproblem in network design formulations make of Benders decomposition one of the most appro-
priate approaches. Indeed, in most of the surveyed articles (see Table 1 for a summary), validations
tests have indicated that Benders decomposition is an eJcient method for solving network design
problems, and may outperform traditional techniques such as Branch-and-Bound or Lagrangian relax-
ation. EJcient solution methodologies have also been obtained by combining Benders decomposition
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Table 1
Summary of the main Benders decomposition applications

Reference Type of problem Additional constraints Features of the method Size of the
problems solved

Gavish [37] Single origin UNDP Constraints on the capaci-
ties of the edges connect-
ing the origin node

Cuts are generated if the master solu-
tion is not connected or if the .ows
obtained by the auxiliary subproblem
violate the capacities

|N |6 12

Hoang [33] Origin–destination pairs
UNDP

Budgetary constraints,
non-linear costs, no ex-
plicit upper bounds on
arc .ow

Generalized Benders decomposition
with master problem solved with a La-
grangian relaxation heuristic and sub-
problem via a convex cost multicom-
modity algorithm [35]

|N |6 155;
|A|6 376

Magnanti et al.
[24]

Origin–destination pairs
UNDP

None Preprocessing with dual-ascent proce-
dure to eliminate variables. Use of
Pareto-optimal cuts

|N |6 30;
|A|6 130

Pereira et al.
[53]

Step-increasing cost
CNDP

Power .ow equations, de-
cision also on the genera-
tion levels

Standard algorithm with cuts generated
for a simpli%ed model kept in the res-
olution of a more complex formulation

|N |6 46; |A|6 73

Benchakroun et
al. [52], Gascon
et al. [10]

Step-increasing cost
CNDP

Multi-period situation.
Node-capacity, power
.ow and voltage drop
limits constraints

Generalized Benders decomposition
with Lagrangean relaxation heuristic to
solve the master

|N |6 13
(3 sources and 10
loads) |A|6 31

Romero and
Monticelli
[8,54], Oliveira
et al. [55]

Step-increasing cost
CNDP

Power .ow equations, de-
cision also on the genera-
tion levels

Hierarchical heuristic approach with
Benders decomposition used to solve
each phase of a multi-step algorithm

|N |6 79;
|A|6 155

Gutierrez et al.
[34]

Origin–destination pairs
UNDP

None (Robust approach
with multi-scenario objec-
tive function)

One master problem for each scenario.
Cross generation of Benders cuts

|N |6 33;
|A|6 100
(11 scenarios)

Gabrel et al.
[48]

Step-increasing cost
CNDP

None Generation of multiple violated
constraints with bipartition inequalities

|N |6 20; |A|6 36
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Reference Type of problem Additional constraints Features of the method Size of the prob-
lems solved

Tsamasphyrou
et al. [56]

Step-increasing cost
CNDP

Power .ow equations,
stochasticity in the de-
mands and availability
of lines and generation
unities

Scenarios divided into a number (algo-
rithm parameter) of sets and one cut
generated for each set (instead of the
extreme situations of one single cut
for all scenarios or one cut for each
scenario)

|N | = 24; |A| = 40
(up to 2000 scenar-
ios)

Sridhar and
Park [32]

Single facility CNDP Node-capacity constraints Embedded Benders decomposition ini-
tiated with a lower bound given by a
cutting plane algorithm and a feasible
solution given by a heuristic method

|N |6 20 (for vari-
ous demand levels)

Randazzo and
Luna [3]

Single origin UNDP Redundant strengthening
constraints to promote
feasible solution in the
Benders iterations

Dual variables in Benders decomposi-
tion initialized with feasible solution
obtained with a linear relaxation and
shortest-path algorithm. Auxiliary sub-
problem decomposed by commodity

|N |6 100;
|A|6 200

Randazzo et al.
[4]

Two-technologies single
origin UNDP

Redundant strengthening
constraints to promote
feasible solution in the
Benders iterations

Dual variables in Benders decom-
position initialized with feasible so-
lution obtained with a shortest-path
algorithm. Auxiliary subproblem de-
composed by commodity

|N |6 41;
|A|6 417

Binato et al. [9] Step-increasing cost
CNDP

Constraints to ensure the
power system stability
based on a disjunctive pa-
rameter

Iterative increasing of disjunctive pa-
rameter solves earlier Benders numer-
ical problem. In each iteration, several
cuts are generated based on relaxed
versions of the subproblem and on Go-
mory’s lifting procedure

|N | = 66; |A| = 237

Mahey et al.
[49]

Step-increasing cost
CNDP

None (Objective function
with non-linear term rep-
resenting the quality of
service.)

Generalized Benders decomposition
with additional cuts. Convex optimiza-
tion subproblem solved with the aid of
a proximal decomposition method

|N |6 25; |A|6 62

Ouorou et al.
[44]

Single facility CNDP Elastic demands; %xed-
open links (expansion
problem)

Generalized Benders decomposition.
Convex optimization subproblem
solved with the aid of a proximal
decomposition method

|N |6 19; |A|6 68
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with other techniques, as proposed by Magnanti et al. [24]. A rich variety of these successful hybrid
approaches is available in the literature.

In spite of this success, Benders decomposition has been mostly ignored for many years, not only
for network design problems but for some of the other applications mentioned in Section 2. We
believe that this tendency is slowly changing, given the increasing number of researchers using this
technique, as shown in this article.
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