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This paper describes an exact algorithm capable of solving large-scale instances of the well-known uncapacitated hub
location problem with multiple assignments. The algorithm applies Benders decomposition to a strong path-based formu-
lation of the problem. The standard decomposition algorithm is enhanced through the inclusion of several features such
as the use of a multicut reformulation, the generation of strong optimality cuts, the integration of reduction tests, and the
execution of a heuristic procedure. Extensive computational experiments were performed to evaluate the efficiency and
robustness of the algorithm. Computational results obtained on classical benchmark instances (with up to 200 nodes) and
on a new and more difficult set of instances (with up to 500 nodes) confirm the efficiency of the algorithm.

Subject classifications : hub location; Benders decomposition, Pareto-optimal cuts; elimination tests.
Area of review : Transportation.
History : Received May 2010; revisions received September 2010, November 2010; accepted February 2011.

1. Introduction
Transportation, telecommunications, and computer net-
works frequently employ hub-and-spoke architectures to
efficiently route commodities between many origins and
destinations. Their key feature lies in the use of consolida-
tion, switching, or transshipment points called hub facilities
to connect a large number of origin/destination (O/D) pairs
by using a small number of links. This helps reduce setup
costs, centralize commodity handling and sorting opera-
tions, and achieve economies of scale on routing costs
through the consolidation of flows.

Hub location problems (HLPs) constitute a difficult class
of NP-hard combinatorial optimization problems combin-
ing location and network design decisions. Their main dif-
ficulty stems from the inherent interrelation between two
levels of the decision process. The first level considers the
selection of a set of nodes to locate hub facilities, whereas
the second level deals with the design of the hub network,
usually determined by the allocation pattern of nodes to
hub facilities.

The field of hub location is rooted in the work of O’Kelly
(1986) and has since evolved into a rich research area. We
refer the reader to some of the main survey articles on this
topic. The early reviews dealing with HLPs, by O’Kelly
and Miller (1994) and Campbell (1994a), contain classifi-
cation schemes for the existing models and for the topo-
logical structures applicable to hub networks. Klincewicz
(1998) later presented a survey on the design of hub net-
works in the context of telecommunication networks, and

Bryan and O’Kelly (1999) concentrated on air transporta-
tion networks. Campbell et al. (2002) wrote a comprehen-
sive survey on network hub location problems in which
the location of hubs is the key decision. A more recent
paper, by Alumur and Kara (2008), provides an updated
and extensive review of the growing literature on network
hub location models.

Despite the considerable efforts already made by many
researchers, the optimal solution of HLPs remains chal-
lenging, particularly when considering more realistic, large-
scale instances. To give an idea of the inherent difficulty of
HLPs, instances with more than 50 nodes cannot be solved
optimally for the vast majority of the variants considered in
the literature, and it is only very recently that for some lim-
ited classes of HLPs, instances with up to 200 nodes have
been solved optimally (see Camargo et al. 2008, Contreras
et al. 2011).

In this paper we present an exact algorithm capable of
solving large-scale instances for one of the most classi-
cal problems in the hub location literature, the Uncapac-
itated Hub Location Problem with Multiple Assignments
(UHLPMA). In this problem, commodities must be routed
via a set of hubs, and thus paths between O/D pairs must
include at least one hub facility. It is assumed that hubs
are fully interconnected with more effective, higher-volume
pathways, which allow a constant discount factor � (0 <
� < 1) to be applied to interhub transportation costs. The
transportation costs between nodes are assumed to be sym-
metric and to satisfy the triangle inequality. The incoming
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and outgoing flows at the hub facilities and the flow routed
through each link of the network are unbounded. The num-
ber of hubs to locate is not known a priori, but a fixed
set-up cost for each hub is considered. The objective is to
minimize the sum of hub fixed costs and of demand trans-
portation costs over the network. We consider the case in
which multiple allocations are allowed, i.e., each O/D point
may send and receive commodities through several hubs.
Note that a multiple assignment pattern is crucial when
minimizing the total transportation cost (Campbell 1996).

There exist several papers on the UHLPMA. The
first mathematical programming model was introduced by
Campbell (1994b), but was not computationally tested.
Since then, several efforts have been made to pro-
duce better and tighter mixed-integer programming (MIP)
formulations. Boland et al. (2004) have developed a
multicommodity flow-based formulation capable of produc-
ing optimal solutions for instances with up to 50 nodes
by using a general-purpose solver. Later, Hamacher et al.
(2004) and Marín et al. (2006) presented path-based formu-
lations yielding much tighter LP bounds. However, due to
their size, these formulations were only able to optimally
solve instances with up to 25 nodes using general-purpose
solvers. Marín et al. (2006) also presented formulations
for a more general case in which distances do not neces-
sarily satisfy the triangle inequality. The first exact algo-
rithms, put forward by Klincewicz (1996) and by Mayer
and Wagner (2002), were branch-and-bound (BB) methods
based on dual-ascent and dual-adjustments techniques. In
particular, the HubLocator algorithm (Mayer and Wagner
2002) was able to obtain optimal solutions for instances
with up to 40 nodes. Marín (2005) proposed a relax-and-
cut algorithm that could solve to optimality instances with
up to 50 nodes. Later, Cánovas et al. (2007) introduced a
new BB method, also based on a dual-ascent strategy. This
method was able to solve to optimality instances with up
to 120 nodes. Recently, Camargo et al. (2008) presented
an exact Benders decomposition algorithm that was applied
to instances involving up to 200 nodes. To the best of
our knowledge, these instances are the largest ever solved
exactly for any type of uncapacitated hub location problem.

The main contribution of this paper is to propose
an exact algorithm applicable to large-scale symmetric
instances of the UHLPMA involving up to 500 nodes and
250,000 commodities. It is a Benders decomposition algo-
rithm based on the path-based formulation of Hamacher
et al. (2004). The basic implementation of the algorithm
is enhanced through several algorithmic features that make
it more robust and efficient. These include: (i) the use of
a stronger multicut Benders reformulation, (ii) the genera-
tion of stronger cuts that approximate Pareto-optimal cuts,
(iii) the inclusion of reduction tests during the inner itera-
tions of the Benders decomposition algorithm and, (iv) the
use of a heuristic for the a priori generation of optimality
cuts. In order to evaluate and assess the robustness, effi-
ciency, and limitations of our proposed algorithm, extensive

computational experiments were performed on symmetric
instances from the classical Australian Post data set and
from a new challenging set of instances.

The remainder of the paper is organized as follows. Sec-
tion 2 formally defines the problem and presents an MIP
formulation as well as properties of optimal solutions. The
basic Benders reformulation, the Benders decomposition
algorithm, and some aspects of the dual problem are then
presented in §3. Section 4 introduces several features that
improve the convergence and efficiency of the algorithm.
Section 5 presents the results of extensive computational
experiments performed on a wide variety of instances. Con-
clusions follow in §6.

2. Problem Definition
Let G = 4N 1A5 be a complete digraph, where N is the
set of nodes and A is the set of arcs. Let H ⊆ N be the
set of potential hub locations, and K represent the set of
commodities whose origin and destination points belong
to N . For each commodity k ∈K, define Wk as the amount
of commodity k to be routed from the origin o4k5 ∈ N to
the destination d4k5 ∈ N . For each node i ∈ H , fi is the
fixed set-up cost for locating a hub. The distances, or trans-
portation costs dij ¾ 0 between nodes i and j , are assumed
to be symmetric and satisfy the triangle inequality. The
UHLPMA consists of locating a set of hubs and of deter-
mining the routing of commodity flows through the hub
nodes, with the objective of minimizing the total set-up and
transportation cost.

Given that hub nodes are fully interconnected and dis-
tances satisfy the triangle inequality, every path between an
origin and a destination node will contain at least one, and
at most two, hubs. For this reason, paths between two nodes
are of the form 4o4k51 i1 j1d4k55, where 4i1 j5 ∈ H × H
is the ordered pair of hubs to which o4k5 and d4k5 are
allocated, respectively. Therefore, the transportation cost of
routing commodity k along the path 4o4k51 i1 j1d4k55 is
given by F̂ijk = Wk4�do4k5i + �dij + �djd4k55, where �, � ,
and � represent the collection, transfer, and distribution
costs along the path. To reflect economies of scale between
hubs, we assume that � < � and � < �. We define binary
location variables zi, i ∈H , equal to 1 if and only if a hub
is located at node i. We also introduce binary routing vari-
ables xijk, k ∈ K, and 4i1 j5 ∈ H × H , equal to 1 if and
only if commodity k transits via a first hub node i and a
second hub node j . Following Hamacher et al. (2004), the
UHLPMA can be stated as follows:

minimize
∑

i∈H

fizi +
∑

i∈H

∑

j∈H

∑

k∈K

F̂ijkxijk1 (1)

subject to
∑

i∈H

∑

j∈H

xijk = 1 ∀k ∈K (2)

∑

j∈H

xijk +
∑

j∈H\8i9

xjik ¶ zi ∀ i ∈H1 ∀k ∈K (3)

xijk ¾ 0 ∀ i1 j ∈H1 ∀k ∈K (4)

zi ∈ 80119 ∀ i ∈H0 (5)
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The first term of the objective function represents the
total set-up cost of the hub facilities and the second term
is the total transportation cost. Constraints (2) guarantee
that there is a single path connecting the origin and desti-
nation nodes of every commodity. Constraints (3) prohibit
commodities from being routed via a nonhub node. Finally,
constraints (4) and (5) are the standard nonnegativity and
integrality constraints. Given that there are no capacity con-
straints on the hub nodes, there is no need to explicitly state
the integrality on the xijk variables because there always
exists an optimal solution of (1)–(5) in which all xijk vari-
ables are integer.

2.1. Properties of Optimal Solutions and
Preprocessing

Several properties and characteristics of optimal UHLPMA
solutions are known and can be used to perform pre-
processing. In this section, we unify and summarize the
most relevant results and present them in the context of
the path-based formulation. We define a hub edge as a
set e ∈ E, where E is the set of subsets of H contain-
ing one or two hubs. We denote e as 8e11 e29 if �e� = 2
and as 8e19 if �e� = 1, i.e., e is a loop. We can elimi-
nate approximately half of the xijk variables associated with
nonoptimal directions by simply using an undirected trans-
portation cost for every hub edge (Hamacher et al. 2004).
In any optimal UHLPMA solution, every commodity uses
at most one direction of a hub edge, the one with lower
transportation cost. The undirected transportation cost Fek
for each e ∈E and k ∈K is defined as Fek = min8F̂ijk1 F̂jik9
if e = 8i1 j9, and Fek = F̂iik if e = 8i9. Moreover, it can be
shown that in any optimal UHLPMA solution, no commod-
ity k will be routed through a hub edge e containing two
different hubs whenever it is cheaper to route it through
only one of them (Boland et al. 2004, Marín et al. 2006).

Property 1. For every k ∈K and e ∈E, �e� = 2, such that
Fek > min8F8e19k

1 F8e29k
9, xek = 0 in any optimal UHLPMA

solution.

We now consider the particular case of commodities k

having the same origin and destination points; that is,
o4k5 = d4k5. One can observe that such commodities will
never be routed through two hubs whenever the distances
are symmetric, i.e., dij = dji for each 4i1 j5 ∈ A. Indeed,
they will always be collected and distributed by their clos-
est open-hub facility (Boland et al. 2004).

Property 2. If dij = dji for each 4i1 j5 ∈A, then for every
e ∈ E, such that �e� = 2 and k ∈ K such that o4k5 = d4k5,
xek = 0 in any optimal UHLPMA solution.

The above properties lead to a more compact formula-
tion with fewer variables, but with the same number of

constraints. We define a set of candidate hub edges for each
commodity k ∈K as

Ek =















8e ∈E2 �e� = 19∪ 8e ∈E2 �e� = 2 and

4Fek < min8F8e19k
1 F8e29k

9591 if o4k5 6= d4k51

8e ∈E2 �e� = 191 otherwise.

The UHLPMA can thus be restated as

minimize
∑

i∈H

fizi +
∑

k∈K

∑

e∈Ek

Fekxek1 (6)

subject to
∑

e∈Ek

xek = 1 ∀k ∈K (7)

∑

e∈Ek 2 i∈e

xek ¶ zi ∀ i ∈H1 ∀k ∈K (8)

xek ¾ 0 ∀k ∈K1 ∀ e ∈Ek (9)

zi ∈ 80119 ∀ i ∈H0 (10)

Finally, we consider the special case of symmetric trans-
portation costs. Transportation costs for the commodity
paths are symmetric when the cost of path 4o1 i1 j1d5 is
equal to the cost of path 4d1 j1 i1 o5, where o1d ∈ N are
O/D nodes and i1 j ∈H are hub nodes.

Property 3. If � = �, then Fek1
= Fek2

for each e ∈ E and
each pair of commodities 4k11 k25 such that o4k15 = d4k25
and d4k15= o4k25.

When transportation costs are symmetric, we can fur-
ther reduce the number of xek variables and constraints
by considering as one commodity k̂ the sum of two com-
modities k1, k2 having the opposite O/D pairs; i.e., Wk̂ =

Wk1
+ Wk2

, where k̂ = 4o4k151d4k255, o4k15 = d4k25, and
d4k15= o4k25.

3. Benders Decomposition
Benders decomposition is a partitioning method applicable
to mixed-integer programs (Benders 1962). It separates the
original problem into two simpler ones: an integer mas-
ter problem and a linear subproblem. In this section, we
introduce a Benders reformulation of the UHLPMA based
on the compact formulation (6)–(10). We then describe a
basic Benders decomposition algorithm to solve the refor-
mulation. Because of degeneracy in the primal subproblem,
there may exist multiple dual solutions. We thus present an
efficient procedure to select, among the set of optimal-dual
solutions, an appropriate solution capable of generating a
strong cut for the master problem.

3.1. Benders Reformulation

Let Z = ��H � denote the set of binary vectors associated
with the zi variables. For any fixed vector ẑ ∈Z, the primal
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subproblem (PS) in the space of the xek variables is

(PS) v4ẑ5= minimize
∑

k∈K

∑

e∈Ek

Fekxek1

subject to (7)1 (9)
∑

e∈Ek 2 i∈e

xek ¶ ẑi

∀ i ∈H1 ∀k ∈K0 (11)

Let �k and uik be the dual variables associated with con-
straints (7) and (11), respectively. The dual subproblem
(DS), which is the dual of PS, can be stated as follows:

(DS) maximize
∑

k∈K

�k −
∑

i∈H

∑

k∈K

ẑiuik1

subject to �k − ue1k
− ue2k

¶ Fek

∀k ∈K1 ∀ e ∈Ek1 �e� = 2 (12)

�k − ue1k
¶ Fek

∀k ∈K1 ∀ e ∈Ek1 �e� = 1 (13)

uik ¾ 0 ∀ i ∈H1 ∀k ∈K0 (14)

Let D denote the set of feasible solutions of DS and
let PD be the set of extreme points of D. Observe that
D is not modified when changing ẑ and, because Fek ¾ 0
for each k ∈ K and e ∈ Ek, the null vector 0 is always
a solution to DS. Hence, because of strong duality, either
the primal subproblem is feasible and bounded, or it is
infeasible. We are thus interested in ẑ vectors that give rise
to primal subproblems of the former case. The following
result establishes under which condition such vectors exist.

Proposition 1. For any vector ẑ ∈ Z such that
∑

i∈H ẑi
¾ 1, the primal and dual subproblems are feasible and
bounded.

Proof. For any vector ẑ such that
∑

i∈H ẑi ¾ 1, there exists
at least one possible path xek for every commodity k ∈ K,
and thus the primal problem is feasible. Moreover, because
the transportation costs Fek are finite and because of con-
straints (7) and (11), any feasible solution of PS must be
bounded. By strong duality, the dual subproblem is also
feasible and bounded. �

It follows that the dual objective function value is
equal to

max
4�1u5∈PD

∑

k∈K

�k −
∑

i∈H

∑

k∈K

ẑiuik0 (15)

Introducing an extra variable � for the overall transporta-
tion cost, we can formulate the Benders master problem
(MP) as follows:

(MP) minimize
∑

i∈H

fizi +�1

subject to �¾
∑

k∈K

�k −
∑

i∈H

∑

k∈K

uikzi

∀ 4�1u5 ∈ PD (16)
∑

i∈H

zi ¾ 1 (17)

zi ∈ 80119 ∀ i ∈H0 (18)

Observe that Benders feasibility cuts associated with the
extreme rays of D are not necessary in the Benders refor-
mulation because the feasibility of PS is ensured by con-
straints (17). We have thus transformed problem (6)–(10)
into an equivalent MIP problem with �H � binary vari-
ables and one continuous variable. Nevertheless, the above
Benders reformulation contains an exponential number of
constraints and must be tackled through an adequate cutting
plane approach. Thus, we iteratively solve relaxed master
problems containing a small subset of the constraints (16)
associated with the extreme points of PD, and we keep
adding these as needed by solving dual subproblems until
an optimal solution to the original problem is obtained.

3.2. Basic Benders Decomposition Algorithm

Let ub denote an upper bound on the optimal solution value
and let t represent the current iteration number. Let P t

D

denote the restricted set of extreme points of D at iter-
ation t, MP4P t

D5 the relaxed master problem obtained by
replacing PD by P t

D in MP, and v4MP4P t
D55 its optimal

solution value. Also, let zt be an optimal solution vec-
tor of MP4P t

D5, DS4zt5 the dual subproblem for zt , and
v4DS4zt55 its optimal solution value. A pseudocode of
the basic Benders decomposition algorithm is provided in
Algorithm 1.

Algorithm 1 (Benders decomposition)

ub ← �, t ← 0
P t
D ← �

terminate ← false
while 4terminate = false5 do

Solve MP4P t
D5 to obtain zt

if 4v4MP4P t
D55= ub5 then

terminate ← true
else

Solve DS4zt5 to obtain 4�t1 ut5 ∈ PD

P t+1
D ← P t

D ∪ 84�t1 ut59

if 4v4DS4zt55+
∑

i∈H fiz
t
i <ub5 then

ub ← v4DS4zt55+
∑

i∈H fiz
t
i

end if
end if
t ← t + 1

end while

Whenever the problem defined by (6)–(10) is feasible,
Algorithm 1 will yield an optimal solution. The com-
putational efficiency of the above Benders decomposition
algorithm depends mainly on: (i) the computational effort
needed to solve MP4P t

D5, (ii) the computational effort
needed to solve DS4zt5, and (iii) the number of iterations
required to obtain an optimal solution. Next, we present
a methodology for efficiently solving DS4zt5 by exploit-
ing the structure of the primal subproblem. In §4, we will
present some techniques focusing on (ii) and (iii).
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3.3. Solving the Subproblem

At any iteration t of Algorithm 1, we obtain an optimal
solution vector zt of MP4P t

D5. Let H t
1 = 8i2 zti = 19 be the

set of open hubs and H t
0 = 8i2 zti = 09 be the set of closed

hubs. Given that zt ∈Z, we can exploit the structure of the
primal subproblem to obtain a vector of optimal-dual vari-
ables 4�t1 ut5 more efficiently than by using an LP solver
for the explicit solution of DS.

In uncapacitated hub location problems with multiple
assignments, once the location of hubs is known, the allo-
cation decisions become trivial. Ernst and Krishnamoorthy
(1998) have shown that the allocation subproblem is equiv-
alent to an all-pairs shortest-path problem in a modified
network. However, this method cannot benefit from the
reduction in the number of variables provided by the pre-
processing phase, which allows PS to be reduced to the
equivalent problem:

(PSt) minimize
∑

k∈K

∑

e∈Ek

Fekxek

subject to
∑

e∈Ek∩4H
t
1×H t

15

xek = 1 ∀k ∈K1

xek ¾ 0 ∀k ∈K1 ∀ e ∈Ek0

This problem can be separated into �K� independent sub-
problems PSt

k, one for each commodity k ∈ K. Each PSt
k

is a semiassignment problem that can be easily solved by
choosing exactly one hub edge, denoted as e4k5, among
those with minimum transportation cost route associated
with open hubs. For a given k, a primal optimal solution of
PSt

k, denoted by xt , can be obtained by setting exactly one
xek variable equal to one and the rest to zero, i.e., xt

e4k5k = 1
for one element e4k5 ∈ arg min8Fek2 e ∈ Ek ∩ 4H t

1 × H t
159

and xt
ek = 0, for e ∈ Ek\8e4k59. The optimal solution value

of PS at zt , denoted as v4zt5, can thus be expressed as

v4zt5=
∑

k∈K

Fe4k5k =
∑

k∈K

min8Fek2 e ∈Ek ∩ 4H t
1 ×H t

1590 (19)

In order to obtain an associated optimality cut, we still need
to produce an optimal-dual solution 4�t1 ut5. We can use
duality theory to recover a dual solution 4�t1 ut5 from the
primal-optimal solution xt . In particular, the complemen-
tary slackness conditions are

ut
ik

(

∑

e∈Ek 2 i∈e

xt
ek − zti

)

= 01 ∀ i ∈H1 k ∈K1 (20)

xt
ek4�

t
k − ut

e1k
− ut

e2k
− Fek5= 01

∀k ∈K1 e ∈Ek1 �e� = 21 (21)

xt
ek4�

t
k − ut

ek − Fek5= 01 ∀k ∈K1 e ∈Ek1 �e� = 10 (22)

First, conditions (20) imply that

ut
ik = 01 ∀k ∈K1 ∀ i ∈H t

1\8e14k51 e24k591

if �e4k5� = 21 (23)

ut
ik = 01 ∀k ∈K1 ∀ i ∈H t

1\8e14k591 if �e4k5� = 10 (24)

Next, conditions (21) and (22) imply that dual slack vari-
ables, associated with optimal-primal variables xt

ek set to 1,

must be equal to 0. For each k ∈K, this condition is

�t
k − ut

e14k5k
− ut

e24k5k
= Fe4k5k1 if �e4k5� = 21 (25)

�t
k − ut

e14k5k
= Fe4k5k1 if �e4k5� = 10 (26)

This implies that every feasible solution 4�1u5 ∈D satisfy-
ing (23)–(26) is indeed an optimal solution of DS. We thus
have characterized the set of optimal solutions of the dual
subproblem associated with the optimal-primal solution xt .

Proposition 2. Let xt be an optimal solution of PStk. The
set of optimal-dual solutions of DSt associated with xt can
be characterized as DOt

= 84�1u5 ∈D2 (23)–(26) hold90

The above result implies that we can construct optimal-
dual solutions 4�t1 ut5 from the optimal-primal solution xt

in two steps. First, we fix each �t
k, u

t
e14k5k

, and ut
e24k5k

, for
each k ∈ K, to a particular feasible value with respect to
constraints (12)–(13) and conditions (25)–(26), and we fix
each ut

ik, such that i ∈ H t
1\8e14k51 e24k59, to zero. Second,

we solve a reduced system of inequalities by fixing the
variables from the first step in constraints (12) and (13),
to obtain an optimal value of the remaining uik such that
i ∈H t

0, for each k ∈K.
In the Online Appendix A, we present a procedure

for computing an optimal solution 4�t1 ut5 from a sub-
set of DOt associated with solutions in which �t

k = Fe4k5k,
ut
e14k5k

= 0, and ut
e24k5k

= 0, for each k ∈ K. An electronic
companion to this paper is available as part of the online
version that can be found at http://or.journal.informs.org/.
By doing so, we avoid checking the feasibility of these vari-
ables with respect to constraints (12)–(13). In §4 we present
some theoretical insights that help us select particular val-
ues of the �t

k, u
t
e14k5k

, and ut
e24k5k

variables associated with
optimal-dual solutions that could produce stronger optimal-
ity cuts.

4. Algorithmic Refinements
We now analyze several ways of improving the conver-
gence and stability of the Benders decomposition algorithm
presented in the previous section. We first present a mul-
ticut version of the Benders reformulation, which exploits
the decomposability of the subproblem. Theoretical aspects
concerning stronger, nondominated optimality cuts are then
introduced and used to develop an algorithm capable of
efficiently generating stronger cuts than those presented
in §3. Later, we show how to incorporate some reduction
tests into the Benders decomposition algorithm in order to
reduce the size of both the master problem and the sub-
problem, and thus accelerate its convergence. Finally, we
present a simple heuristic procedure that can be used to
generate an initial set of optimality cuts for the master prob-
lem to accelerate the convergence of the algorithm and to
improve the efficiency of the reduction tests.

4.1. Multicut Benders Reformulation

It is known that the number of cuts required to obtain an
optimal solution of the Benders reformulation will be, in
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the worst case, equal to the number of extreme points in
D. However, this number can be reduced given that the
subproblem is decomposable into �K� independent subprob-
lems (see, e.g., Birge and Louveaux 1988). We could in
principle generate optimality cuts associated with extreme
points of each dual polyhedron of the �K� subproblems,
but Camargo et al. (2008) show that when adding �K� cuts
per iteration, the reduction in the number of iterations is
not justified by the increased computational effort required
for the solution of the relaxed master problems, even for
small-size instances.

Instead of adding in a disaggregated way all �K� cuts at
each iteration, we can aggregate the information obtained
to generate a set of optimality cuts associated with sub-
sets of commodities. In particular, for each node j ∈H , let
Kj ⊂ K be the subset of commodities whose origin node
is j . We can separate the subproblem into �H � indepen-
dent subproblems, one for each node. Hence, we consider
the dual polyhedra of these �H � subproblems and generate
cuts from them. Let PD be the set of extreme points of the
dual polyhedron PDj associated with subproblem i. We thus
obtain the following Benders reformulation:

minimize
∑

i∈H

fizi +
∑

i∈H

�i1

subject to (17)1 (18)

�j ¾
∑

k∈Kj

�t
k −

∑

i∈H

∑

k∈Kj

ut
ikzi

∀ j ∈H1 ∀ 4�1u5 ∈ PDj 0 (27)

Using this reformulation, only �H � potential optimal-
ity cuts will be generated when solving the subproblem,
instead of �K� cuts as is the case when considering the
complete separability into �K� dual subproblems.

4.2. Pareto-Optimal Cuts

One way to improve the convergence of the Benders algo-
rithm is to construct stronger, undominated cuts, known as
Pareto-optimal cuts (Magnanti and Wong 1981). We say
that the cut generated from the dual solution 4�a1 ua5 dom-
inates the cut generated from the dual solution 4�b1 ub5
if and only if

∑

k∈K �
a
k −

∑

i∈H

∑

k∈K u
a
ikzi ¾

∑

k∈K �
b
k −

∑

i∈H

∑

k∈K u
b
ikzi, for all z ∈ Z with strict inequality for at

least one point. A cut is Pareto optimal if no other cut
dominates it. Let Q be the polyhedron defined by (17) and
0 ¶ zi ¶ 1 for all i ∈ H , and let ri4Q5 denote the relative
interior of Q. To identify a Pareto-optimal cut at itera-
tion t, we must solve the following Pareto-optimal sub-
problem (POt):

(POt) maximize
∑

k∈K

�k −
∑

i∈H

∑

k∈K

z0
i uik1

subject to (12)–(13)1

�k −
∑

i∈H

ztiuik = Fe4k5k ∀k ∈K1 (28)

where z0 ∈ ri4Q5 and, as before, Fe4k5k is the optimal solu-
tion value of subproblem k. Constraints (28) ensure that the
optimal solution of POt is chosen from the set of optimal
solutions of DSt . Note that POt can also be separated into
�K� independent subproblems (POt

k), one for each k ∈ K.
We thus obtain

(POt
k) maximize �k −

∑

i∈H

z0
i uik1 (29)

subject to �k −
∑

i∈H

ztiuik = Fe4k5k (30)

�k − ue1k
− ue2k

¶ Fek

∀ e ∈Ek1 �e� = 2 (31)

�k − ue1k
¶ Fek ∀ e ∈Ek1 �e� = 1 (32)

uik ¾ 0 ∀ i ∈H0 (33)

Because of constraint (30) and of the fractional coef-
ficients z0

i , the primal structure of (29)–(33) cannot be
exploited to efficiently obtain an optimal-dual solution,
as is the case for the DS. This means that we need to
solve �K� linear programs, one for each k ∈ K, to obtain
a Pareto-optimal cut. Computational experiments indicate
that the generation of Pareto-optimal cuts considerably
reduces the number of required iterations to converge.
However, the time needed to solve the �K� linear programs
is not compensated by the improved convergence of the
Benders algorithm, even on small instances. Given that our
goal is to solve large instances, we have developed an effi-
cient procedure capable of producing good approximations
of the optimal solution of POt

k, and thus of generating
stronger optimality cuts without requiring the explicit solu-
tion of (29)–(33).

Here we present a procedure capable of efficiently pro-
ducing stronger optimality cuts, which are not necessar-
ily Pareto-optimal, by exploiting the fact that POt

k can be
expressed as the maximization of a piecewise-linear and
concave function of �k. In particular, if we fix the value
of the �k variable in (29)–(33), we can write the resulting
subproblem as the following implicit function:

L4�k5= maximize −
∑

i∈H

z0
i uik1

subject to
∑

i∈H

ztiuik = �k − Fe4k5k (34)

ue1k
+ ue2k

¾ �k − Fek

∀ e ∈Ek1 �e� = 2 (35)

ue1k
¾�k−Fek ∀e∈Ek1 �e�=1 (36)

uik ¾ 0 ∀ i ∈H0 (37)

We now can state POt
k as

max
�k

G4�k51 (38)

where G4�k5= �k −L4�k5.
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Proposition 3. G4�k5 is a piecewise-linear and concave
function of �k.

Proof. Rewriting the right-hand side vector of constraints
(34)–(37) as b + �kb̂, where b = 4−Fe4k5k1−F1k1 0 0 0 1

− F�Ek �k
5 and b̂ = 41111 0 0 0 115, the problem can be viewed

as a linear program in which the right-hand side vector
is perturbed along the identity vector. From linear pro-
gramming theory, we know that parametric analysis on the
right-hand side vector in a maximization problem always
produces a piecewise-linear and concave function (Bazaraa
et al. 1990). Therefore, L4�k5 is a piecewise-linear and
concave function of �k. �

By applying parametric analysis over L4�k5, we can
determine the ranges of the linear segments and, thus,
the break points at which changes of optimal bases (with
respect to �k) take place in G4�k5. Moreover, the slope
of each linear segment can be computed using the infor-
mation of its associated optimal basis. We can therefore
obtain an optimal solution of POt

k as follows. First, set �k

to some initial feasible value and evaluate L4�k5 to obtain
an optimal basis associated with a linear segment. Then,
perform as many dual-simplex iterations as break points
exist before reaching a point at which the slope of G4�k5 is
equal to zero. Even though this procedure is more efficient
than solving POt

k directly by an LP solver, it still requires
the solution of an LP problem to generate an initial optimal
basis and its update at each break point.

Instead of optimally solving POt
k to produce a Pareto-

optimal cut, we solve POt
k only approximately and still pro-

duce strong, but not necessarily undominated, optimality
cuts. Our procedure is based on the estimation of the func-
tion G4�k5 by using an adaptation of Algorithm 2 presented
in Online Appendix A. Using this estimation, we succes-
sively evaluate G4�k5 within a given interval Lk ¶ �k ¶Uk

and increase �k until the estimation of G4�k5 stops increas-
ing, or until �k = Uk. In Online Appendix B, we present
the details on how to efficiently evaluate G4�k5 and how
to construct an interval in which the optimal value of �k is
contained.

4.3. Elimination Tests

The efficiency of the Benders decomposition algorithm can
be improved by reducing the size of the original model.
By doing so, both the master problem and the subprob-
lem can be solved more efficiently. Moreover, the conver-
gence of the algorithm can also benefit from the solution
space reduction. In §2 we have presented several optimal
UHLPMA properties that can help reduce the size of the
model prior to the solution process. Nevertheless, the num-
ber of variables and constraints remains very high in large-
scale instances.

The size of the model can be further reduced by exploit-
ing the information obtained during the inner iterations of
the Benders algorithm. In this section, we develop two dif-
ferent reduction tests capable of eliminating variables that

are known not to appear in an optimal solution. Reduction
tests have been successfully applied for other HLPs in the
context of Lagrangean relaxation (Contreras et al. 2009,
2011). To the best of our knowledge, the idea of using
reduction tests within a Benders decomposition algorithm
is new.

The first reduction test uses bounds on the optimal solu-
tion value to check whether a node may appear in an
optimal solution. It exploits the primal information gener-
ated during the inner iterations of the Benders algorithm to
obtain an estimation of the location and transportation costs
associated with feasible solutions containing a hub located
at a given node. Using this estimation, we can sometimes
determine that the node will not be chosen as a hub. Let
MPt

LP denote the linear relaxation of MPt , v4MPt
LP5 its opti-

mal solution value, and rci the reduced cost associated with
variable zi. The following result provides a reduction test
for closing a hub node.

Proposition 4. Let UB be an upper bound on the optimal
value of MP. If zi is a nonbasic variable in the optimal
solution to MPt

LP and v4MPt
LP5+ rci > UB, then zi = 0 in

any optimal solution.

Proof. The result follows from the fact that v4MPt
LP5+ rci

is a lower bound on the objective function value if a hub is
located at node i. Therefore, if v4MPt

LP5+ rci > UB, then
zi = 0 in any optimal solution. �

After applying this test, H is updated by removing the
eliminated nodes from it. The corresponding node and edge
variables are also eliminated from the model.

The second reduction test uses a stronger lower bound
that allows checking whether any node in a set of candidate
hub nodes Q ⊂ H may appear in an optimal solution. By
solving a slightly modified MPt1 we can obtain an estima-
tion of the total cost associated with feasible solutions con-
taining at least one hub located at a node contained in Q.
Using this estimation, we can determine whether zi = 0 for
all i ∈Q in every optimal solution. We define the following
modified master problem:

(MPt4Q5) minimize
∑

i∈H

fizi +
∑

i∈H

�i

subject to �i ¾
∑

k∈Ki

�t
k −

∑

i∈H

∑

k∈Ki

ut
ikzi

∀ i ∈H1 4�1u5 ∈ P t
Di

∑

i∈Q

zi ¾ 1

zi ∈ 80119 ∀ i ∈H0

The following result provides the reduction test for clos-
ing a set of hub nodes.

Proposition 5. Let UB be an upper bound on the optimal
solution value of MP. If v4MPt4Q55 > UB, then zi = 0 for
each i ∈Q in any optimal solution.
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Proof. The result follows from the fact that v4MPt4Q55 is
a lower bound on the objective function value if a hub is
located at some node i ∈Q. Therefore, if v4MPt4Q55 > UB,
then zi = 0 for each i ∈Q in any optimal solution. �

For a particular set Q ⊂H , the previous test requires the
solution of an integer linear program. Therefore, we must
carefully choose a candidate set Q containing the largest
possible number of nodes, while yielding a lower bound
strong enough to close the hub nodes. In particular, we want
to exclude nodes associated with good feasible solutions
of MPt4Q5 having an objective function value inferior to
the upper bound. If we generate a set Q failing the test,
we must remove elements from Q so that the resulting set
improves the lower bound and passes the test.

The efficiency of the previous test also relies on the qual-
ity of the approximation of MPt . Thus, we should apply the
test once we have constructed a sufficiently good approxi-
mation of MP. At the beginning of the Benders algorithm
we set Q =H . Then, at iteration t of the algorithm we dis-
card from Q the set of open hub nodes from the optimal
solution of MPt (i.e., Q is updated to Q\8i ∈Q2 zti = 19) as
well as the nodes that may have been eliminated through
the first test.

When we perform the second elimination test with
MPt4Q5 and it fails, we eliminate from Q the set of open
hub nodes from an optimal solution, denoted by zt4Q5,
i.e., Q is updated to Q\8i2 zti4Q5 = 19. We also eliminate
from Q the nodes having small reduced costs ĉi associated
with the LP relaxation, denoted by MPt

LP4Q5, of MPt4Q5.
In particular, we eliminate from Q nodes such that ĉi <
� × cmax, where cmax is the maximum reduced cost associ-
ated with nonbasic variables, and � is a control parameter
such that 0 < � < 1. These previous nodes are eliminated
from Q only when the gap between the upper bound and
the optimal solution value of MPt

LP4Q5 exceeds a threshold
� . The proposed procedure is summarized in Algorithm 5
of Online Appendix C.

4.4. A Heuristic Procedure for the UHLPMA

In our Benders reformulation, we know that any vector
z ∈Z such that

∑

i∈H zi ¾ 1 is a feasible solution for the MP
and thus has at least one optimality cut associated with it.
We can apply a heuristic to produce a diverse set of feasi-
ble solutions, yielding optimality cuts that are incorporated
at the beginning of the algorithm. In fact, it is known that
the use of an initial approximation of the Benders refor-
mulation polyhedron has a major impact on the required
number of iterations (see, e.g., Geoffrion and Graves 1974,
Cordeau et al. 2000). The heuristic procedure can also yield
good upper bounds that improve the effectiveness of the
reduction tests.

We present a simple yet effective heuristic procedure
capable of generating high-quality solutions, and diverse
solutions, which may provide useful optimality cuts. The

proposed heuristic is composed of two phases: an esti-
mation phase and an intensification phase. The estimation
phase is an iterative procedure that constructs a set of ini-
tial feasible solutions that are used to construct an interval
on the estimated number of open-hub facilities in an opti-
mal solution. The intensification phase is an iterative pro-
cedure that generates feasible solutions containing sets of
open hubs whose cardinality lies in the interval obtained in
the previous phase. Within each phase, we use a common
constructive procedure that randomly constructs a feasible
solution with a given number of open-hub facilities and
improves it by means of a local search procedure. In Online
Appendix D, we provide a detailed explanation of the con-
structive procedure as well as of the overall heuristic.

5. Computational Experiments
We now present the results of extensive computational
experiments performed to assess the behavior of our algo-
rithm. In the first part of the computational experiments, we
focus on a comparison of different versions of the Benders
decomposition algorithm to evaluate the impact of each of
the proposed algorithmic features. The second part of the
experiments is mainly devoted to a comparison between
our exact method and several exact algorithms reported in
the literature. In the third part of the experiments, we test
the robustness and limitations of our method on large-scale
instances involving up to 500 nodes. All algorithms were
coded in C and run on a Dell Studio PC with an Intel
Core 2 Quad processor Q8200 running at 2.33 GHz and 8
GB of RAM under a Linux environment. The master prob-
lems of all versions of the algorithm were solved using the
callable library of CPLEX 10.1.

We have used the well-known Australian Post (AP) set of
instances to perform the first two parts of the computational
experiments. This data set is the most commonly used in
the hub location literature. It consists of the Euclidean dis-
tances cij between 200 cities in Australia, of a computer
code to reduce the size of the set by grouping cities, and
of the values of Wk representing postal flows between pairs
of cities. Each instance has a strictly positive flow between
every pair of nodes. Therefore, the number of commodi-
ties is given by �K� = �H �2. From this set of instances, we
have selected those with �H � = 25, 50, 75, 100, 125, 150,
175, and 200 and with set-up costs of the type loose (L)
(see Contreras et al. 2011, for details). We have varied the
required number of open-hub nodes in an optimal solution
by increasing the distances of a particular instance as dij =

TC × cij for each pair 4i1 j5 ∈H ×H , where TC is a scal-
ing parameter for the transportation costs. For each instance
size we have generated nine different instances correspond-
ing to different combinations of values for the interhub dis-
count factor � ∈ 8002100510089 and the transportation cost
scaling factor TC ∈ 82151109. Finally, we have considered
symmetric transportation costs, i.e., � = �= 1.
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In preliminary experiments, we have used the AP
instances to set the values of the parameters of the algo-
rithm. The following values were used in all our tests: � =

005, � = 005, � = 10, � = 0025, � = 00002, rmax = 10, and
z0
i = 001 for each i ∈H . In the first two parts of the exper-

iments, the Benders decomposition algorithm terminated
when one of the following criteria was met: (i) the optimal-
ity gap between the upper and lower bounds was below a
threshold value �, i.e., �ub− lb�/ub < �, (ii) the maximum
number of iterations Itermax was reached; or (iii) the max-
imum time limit Timemax was reached. We set the param-
eter values as � = 10−6, Itermax = 11000, and Timemax =

71200 seconds.

5.1. Analysis of Algorithmic Refinements

The aim of the first part of the computational experiments
is to analyze the effectiveness of each of the algorithmic
refinements proposed in §4. For presentation purposes, we
only include summarized results of all experiments. The
interested reader is referred to Online Appendix F for the
detailed results.

We first focus on analyzing the benefits of using the
multicut Benders reformulation over the standard Benders
reformulation. We have implemented two different versions
of Algorithm 1. The first one, called 1-cut, uses the refor-
mulation (16)–(18) in which only one optimality cut is
added per iteration. The second one, called �H �-cut, uses
the stronger reformulation (17), (18), (27) in which �H �

optimality cuts are added per iteration. Both algorithms use
Algorithm 2 (Online Appendix A) to generate the optimal-
ity cuts at each iteration. The results of the comparison are
summarized in Table 1. The first column gives the number
of nodes associated with each group of instances. The next
two columns under the heading Optimal Found give the
number of optimal solutions found for 1-cut and �H �-cut,
respectively. The next two columns under the heading Aver-
age Time (sec) give the average CPU time in seconds
needed to obtain an optimal solution of the problem by
using 1-cut and �H �-cut, respectively. This average is com-
puted over the instances that could be solved within the
time limit. The last two columns under the heading Aver-
age Iterations provide the required number of iterations

Table 1. Comparison of Benders reformulations.

Optimal found Average time (sec.) Average iterations

�H � 1-cut �H �-cuts 1-cut �H �-cuts 1-cut �H �-cuts

25 9/9 9/9 8043 0067 65000 9078
50 9/9 9/9 78037 4028 98011 11067
75 9/9 9/9 158037 7020 87078 11011

100 8/9 9/9 11727041 54027 171011 15067
125 8/9 9/9 950024 68064 119022 13056
150 8/9 9/9 11040005 166083 134011 15022
175 7/9 9/9 11885027 325066 112089 12067
200 7/9 8/9 21069038 11340087 118067 18056

Average 65/72 71/72 989069 246005 113036 13053

for each of the algorithms to converge. Table 1 shows that
both algorithms 1-cut and �H �-cut are able to solve most
instances within two hours. However, the strong multicut
reformulation is able to solve 71 out of the 72 consid-
ered instances, whereas the standard Benders reformula-
tion can solve only 65. The columns Average time (sec)
indicate that �H �-cut requires on average much less com-
putation time than 1-cut. Moreover, as can be seen in the
Average iterations columns, the convergence of the Benders
algorithm is greatly improved by using �H �-cut. The num-
ber of required iterations to converge is reduced by a fac-
tor of 10 on average. Given that algorithm �H �-cut clearly
outperforms 1-cut, we only consider the multicut Ben-
ders reformulation in the remainder of the computational
experiments.

We next focus on analyzing the effectiveness of gener-
ating stronger, possibly undominated, optimality cuts. In
particular, we have implemented three different versions
of Algorithm 1. The first version, referred to as NC, uses
the optimality cuts obtained from Algorithm 2 (Online
Appendix A). The second version, referred to as POC,
uses the Pareto-optimal cuts obtained when solving POt

by using the dual-simplex algorithm of CPLEX 10.1. The
third version, referred to as SC, uses the strong optimal-
ity cuts obtained from Algorithm 4 (Online Appendix B).
The results of the comparison between these algorithms
are summarized in Table 2. The three columns under the
heading Optimal found give the number of optimal solu-
tions found for each of the considered algorithms. The next
columns provide computing times and iterations counts for
each version.

The results of Table 2 confirm the efficiency of
generating stronger optimality cuts. Both the POC and SC
algorithms are able to obtain the optimal solution of all
considered instances within two hours of computation time.
However, the larger CPU time needed to solve the POt

problems using POC does not compensate for the improve-
ments in convergence, even for the small-size instances.
As can be seen in the Average time (sec) columns, SC
is considerably more efficient than NC and POC. Even
though SC generates optimality cuts that are not necessarily
Pareto optimal, these seem to be stronger than those used
in NC. The Average iterations columns also confirm that
the convergence of the Benders algorithm can be improved
by using SC, but this version is slightly worse than POC.
Given that algorithm SC clearly outperforms NC and POC,
we only consider the generation of optimality cuts with
Algorithm 4 in the rest of the experiments.

In Online Appendix E we provide the computational
results related to the analysis of the performance of the
heuristic described in §4.4, as well as the analysis on the
effect of incorporating the elimination tests of §4.3 into the
Benders decomposition algorithm.
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Table 2. Comparison of optimality cuts.

Optimal found Average time (sec.) Average iterations

�H � NC POC SC NC POC SC NC POC SC

25 9/9 9/9 9/9 0067 1013 0050 9078 6078 7089
50 9/9 9/9 9/9 4028 9005 2010 11067 7067 8000
75 9/9 9/9 9/9 7020 32075 5091 11011 7000 7089

100 9/9 9/9 9/9 54027 126078 21028 15067 8022 9056
125 9/9 9/9 9/9 68064 366086 56072 13056 9044 10067
150 9/9 9/9 9/9 166083 766042 123023 15022 9089 11089
175 9/9 9/9 9/9 325066 11130043 254076 12067 8033 9056
200 8/9 9/9 9/9 11340087 21275053 738005 18056 10089 13078
Average 71/72 72/72 72/72 262017 588062 150032 13053 8053 9090

5.2. Comparison with Alternative Solution
Methods

We now present a comparison between our best version
of the Benders decomposition algorithm and several exact
solution methods previously proposed in the literature. In
particular, we compare our exact method with the fol-
lowing five exact algorithms: (i) the Benders decompo-
sition algorithm of Camargo et al. (2008), (ii) the dual
adjustment procedure developed by Cánovas et al. (2007),
(iii) the relax-and-cut algorithm proposed by Marín (2005),
(iv) the solution of a flow-based formulation using CPLEX
as described in Boland et al. (2004), and (v) the solution of
the strong path-based formulation presented in §2.1, also
using CPLEX. To provide a fair comparison, we have run
all algorithms on the same computer. The dual adjustment
procedure and the relax-and-cut algorithm were obtained
from their respective authors, whereas the remaining algo-
rithms were coded by us.

The detailed results of the comparison between the exact
methods using the AP data set are provided in Table 3. The
first three columns give the number of nodes, the discount
factor, and the transportation scale factor. The remaining
columns give the CPU time in seconds needed to obtain
an optimal solution for each exact algorithm. The Benders
column provides the results obtained with the best version
of our Benders decomposition algorithm. Whenever a solu-
tion method cannot optimally solve an instance within two
hours of CPU time, we write time in the corresponding
entry of the table. If an algorithm runs out of memory we
then write memory.

The results of Table 3 clearly indicate that our exact
method outperforms all previously proposed methods.
Observe that our algorithm is able to solve all 72 instances
whereas the algorithm of Camargo et al. (2008) is only
able to optimally solve 52 within two hours of CPU
time. The dual adjustment approach by Cánovas et al.
(2007) is able to find the optimal solution in 45 out of
the 72 instances, and the relax-and-cut approach of Marín
(2005) can only solve instances with up to 75 nodes.
Similar results are obtained when solving the flow-based
formulation of Boland et al. (2004) and the path-based for-
mulation (6)–(10) with CPLEX. This is a clear indication

of the limitations of using a general-purpose solver to solve
the UHLPMA. In the case of the path-based model, eight
GB of memory are not sufficient to load the model into
CPLEX when �H �> 50. With the flow-based model, larger
size instances can be loaded into CPLEX, but their weaker
LP bounds do not allow solving instances with more than
75 nodes within two hours of CPU time. It can be seen
that our algorithm is always at least one order of magnitude
faster than the other exact methods, with the exception of
the small instances involving 25 nodes.

5.3. A New Data Set

In the previous experiments, we have shown that the largest
size instances of the AP set, containing 200 nodes, can be
optimally solved by our algorithm within less than 20 min-
utes of CPU time. Given that this set contains the largest
size instances currently available, we have generated a set
of larger instances to test the robustness and limitations of
our Benders decomposition algorithm.

At this stage, some comments on the structure of flows in
the AP set are in order. We have observed that the amount
of flow originating at each node is highly variable in every
instance of this set: all instances have a very small number
of nodes for which the outgoing flow is much larger than
for the other nodes. For example, the 200-nodes instance of
the AP set has one node generating 15% of the total flow of
the network, another generating 7%, six nodes generating
2%, and the remaining ones each generating less than 1%.
This situation seems to make the solution of these instances
rather easy because very few nodes have a large impact on
the overall cost of the network and thus greatly influence
the hub location decisions. As we will show next, instances
in which the outgoing flow of each node is within a narrow
range are considerably more difficult to solve.

For this reason, we introduce three different sets of
instances with diverse structural characteristics in the flow
network. In particular, we consider different levels of mag-
nitude for the amount of flow originating at a given node to
obtain three different sets of nodes: low-level (LL) nodes,
medium-level (ML) nodes, and high-level (HL) nodes. The
total outgoing flow of LL, ML and HL nodes lies in the
interval 611107, 61011007, and 61001110007, respectively.
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Table 3. Comparison of exact methods with AP instances from 25 to 200 nodes.

Total time (sec.)

�H � � TC CPLEX Boland et al. (2004) Marín (2005) Cánovas et al. (2007) Camargo et al. (2008) Benders

25 0.2 2 1069 1037 0032 0030 0024 0011
0.2 5 1036 3059 0035 0019 4001 0030
0.2 10 0080 2020 0025 0028 73000 0085
0.5 2 1012 13078 0016 0011 0020 0008
0.5 5 5029 18035 0055 0029 1076 0056
0.5 10 0082 5063 0029 0010 10078 0044
0.8 2 0099 36022 0014 0009 0019 0006
0.8 5 1004 17083 0015 0006 0056 0017
0.8 10 0093 9083 0012 0011 2054 0025

50 0.2 2 874046 526070 56021 21036 4018 0096
0.2 5 159027 644038 58024 6039 20038 1076
0.2 10 57070 218054 74089 12034 624041 11075
0.5 2 61062 41982049 29041 5020 2065 0085
0.5 5 102006 41128070 37011 5052 12004 1076
0.5 10 54058 11030034 22095 6020 67016 3050
0.8 2 34034 Time 9033 2054 2033 0080
0.8 5 61031 61406017 7069 1031 5035 0087
0.8 10 166038 21471061 14044 7087 35004 2024

75 0.2 2 Memory 61817061 41833026 104031 27043 4073
0.2 5 Memory 21579095 51174035 86034 73094 5080
0.2 10 Memory 31045077 41916055 61012 21208001 19006
0.5 2 Memory Time 31041093 40089 21040 4078
0.5 5 Memory Time 31287002 59071 53098 5083
0.5 10 Memory Time 21974016 24014 129012 7072
0.8 2 Memory Time 699031 35003 17002 4030
0.8 5 Memory Time 11262082 12052 50029 4043
0.8 10 Memory Time 11438058 37082 77054 7005

100 0.2 2 Memory Time Time 568043 210072 15014
0.2 5 Memory Time Time 11196008 11364060 28009
0.2 10 Memory Time Time 11244014 Time 58048
0.5 2 Memory Time Time 182037 165075 13081
0.5 5 Memory Time Time 417031 787001 22061
0.5 10 Memory Time Time 11762005 41586082 34077
0.8 2 Memory Time Time 102084 126038 13068
0.8 5 Memory Time Time 155074 259070 15032
0.8 10 Memory Time Time 415001 11198083 18079

125 0.2 2 Memory Time Memory 21399008 747044 47077
0.2 5 Memory Time Memory 11584067 21406095 56034
0.2 10 Memory Time Memory 21691029 Time 112020
0.5 2 Memory Time Memory 625049 503083 38023
0.5 5 Memory Time Memory 836001 21150063 49051
0.5 10 Memory Time Memory 31420010 Time 73052
0.8 2 Memory Time Memory 179088 459049 36078
0.8 5 Memory Time Memory 547098 11061016 43055
0.8 10 Memory Time Memory 11556003 Time 48036

150 0.2 2 Memory Time Memory Memory 21360082 121083
0.2 5 Memory Time Memory Memory Time 123090
0.2 10 Memory Time Memory Memory 21360082 121083
0.5 2 Memory Time Memory Memory 11814004 96016
0.5 5 Memory Time Memory Memory Time 112044
0.5 10 Memory Time Memory Memory Time 135071
0.8 2 Memory Time Memory Memory 11278042 86026
0.8 5 Memory Time Memory Memory 31816060 91066
0.8 10 Memory Time Memory Memory 61638050 105007

175 0.2 2 Memory Memory Memory Memory 21062087 237055
0.2 5 Memory Memory Memory Memory Time 256008
0.2 10 Memory Memory Memory Memory Time 525067
0.5 2 Memory Memory Memory Memory 11776036 196025
0.5 5 Memory Memory Memory Memory 61575061 206045
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Table 3. (Continued).

Total time (sec.)

�H � � TC CPLEX Boland et al. (2004) Marín (2005) Cánovas et al. (2007) Camargo et al. (2008) Benders

175 0.5 10 Memory Memory Memory Memory Time 263070
0.8 2 Memory Memory Memory Memory 11425014 176031
0.8 5 Memory Memory Memory Memory 31621065 184016
0.8 10 Memory Memory Memory Memory Time 197027

200 0.2 2 Memory Memory Memory Memory Time 483091
0.2 5 Memory Memory Memory Memory Time 485047
0.2 10 Memory Memory Memory Memory Time 11271034
0.5 2 Memory Memory Memory Memory Time 393036
0.5 5 Memory Memory Memory Memory Time 394065
0.5 10 Memory Memory Memory Memory Time 750023
0.8 2 Memory Memory Memory Memory Time 338044
0.8 5 Memory Memory Memory Memory Time 361097
0.8 10 Memory Memory Memory Memory Time 383049

Using these nodes, we generate three different classes of
instances. In the first set of instances, called Set I, the num-
ber of HL, ML, and LL nodes is 2%, 38%, and 60% of
the total number of nodes, respectively. In the second set,
called Set II, we construct an instance in such a way that
the number of HL, ML, and LL nodes is 30%, 35%, and
35% of the total number of nodes, respectively. Finally, in
the third set, called Set III, the number of HL, ML, and LL
nodes is 0%, 1%, and 99% of the total number of nodes,
respectively. In Set I we generate instances with �H � = 50,
100, 150, 200, 250, 300, 350, 400, 450, and 500. In Set II
and Set III, we generate instances with �H � = 50, 100, 150,
and 200. For each value of n in each set, we randomly gen-
erate the 4x1 y5-coordinates of the nodes from a continuous
uniform distribution in 601110007 × 601110007 and define
the distance between pairs of nodes as the Euclidean dis-
tance. We generate the fixed costs for the hub facilities as
fi = � × AD, where � ∼ U600310087 and AD =

∑

k∈K Wk.
Finally, for each basic instance we generate nine instances
corresponding to different combinations of values for the
interhub discount factor � ∈ 8002100510089 and the trans-
portation costs scale factor TC ∈ 82151109. Therefore, Set I
contains a total of 90 instances, whereas sets Set II and
Set III contain 36 instances each.

In these final computational experiments, we further ana-
lyze the performance of the algorithmic refinements, espe-
cially the heuristic procedure and the elimination tests. To
this end, we consider two different versions of Algorithm 1.
The first version, referred to as B1, uses the multicut
reformulation and the strong optimality cuts obtained from
Algorithm 4 (Online Appendix B). However, it does not
include the initial cuts nor the elimination tests. The second
version, referred to as B2, uses the multicut reformulation,
the strong cuts, an initial cut associated with the best upper
bound found by Algorithm 7 (Online Appendix D), and the
two elimination tests. Because of the increase in instance
size, we have extended the CPU time limit to one day, i.e.,
Timemax = 861400 seconds.

Computational results are summarized in Tables 4, 5,
and 6. The columns Optimal found give the number of
optimal solutions found by the heuristic, B1 and B2. The
columns Average % gap provide the average percent devi-
ation between the best upper and lower bounds, for the
heuristic, B1 and B2 when the optimal solution cannot
be found within the given time limit. That is, % gap =

1004UBT − LBT 5/4UBT 5, where UBT and LBT are the
upper and lower bounds, respectively, obtained with T =

B11B2. The columns Average time (sec) provide the aver-
age CPU time in seconds needed to obtain an upper bound
in the case of the heuristic, and an optimal solution of the
problem by using B1 and B2, respectively. The columns
Average iterations give the average number of iterations for
B1 and B2. The column % Closed hubs gives the aver-
age percent of hubs that were closed by the reduction tests
in B2.

Table 4 shows that both B1 and B2 algorithms are able
to obtain an optimal solution in all instances except one.
The relative gap in the remaining instance is 0.67% for B1
and 0.59% for B2. The heuristic reaches an optimal solu-
tion 48 times out of 54. Moreover, the percent deviation
in the instances in which the optimal solution could not be
found never exceeds 0.8%, and the total average deviation
is 0.04%. Algorithm B2 is clearly faster than B1 on large-
scale instances. On 250-nodes and 300-nodes instances, the
average CPU time is reduced by half when using the reduc-
tion tests and the heuristic procedure. Also, from the Aver-
age iterations columns we observe that the convergence of
the Benders algorithm can be improved by incorporating
these features. Moreover, column % Closed hubs indicates
that a considerable number of candidate hub nodes can be
eliminated by using the elimination tests. The percent of
closed hubs ranges from 46% to 98%, with an average of
79.62%.

Similar observations can be drawn from Table 5 for Set II
instances. We observe that these instances are more difficult
than those of Set I, and the largest instances solved contain
only 200 nodes. One possible explanation for this behavior
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Table 4. Summary results of 54 instances of Set I with �H � = 50, 100, 150, 200, 250, and 300.

Optimal found Average % gap Average time (sec.) Average iterations

�H � Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 % Closed hubs

50 7/9 9/9 9/9 0008 0000 0000 0062 1069 2011 9089 8000 70089
100 9/9 9/9 9/9 0000 0000 0000 4052 10021 12067 9033 7089 79011
150 9/9 9/9 9/9 0000 0000 0000 21092 80044 72041 14011 11033 84037
200 8/9 9/9 9/9 0003 0000 0000 39080 321043 236049 14089 11000 86006
250 8/9 9/9 9/9 0000 0000 0000 114058 41976090 21597097 24056 17033 82089
300 7/9 8/9 8/9 0012 0007 0007 169005 151380002 81832061 35067 30033 74041
Average 48/54 53/54 53/54 0004 0001 0001 58041 31461078 11959004 18007 14031 79062

Table 5. Summary results of 36 instances of Set II with �H � = 50, 100, 150, and 200.

Optimal found Average % gap Average time (sec.) Average iterations

�H � Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 % Closed hubs

50 9/9 9/9 9/9 0000 0000 0000 0086 3000 3081 8011 7022 69033
100 8/9 9/9 9/9 0006 0000 0000 8020 27023 21061 14044 11000 74056
150 7/9 9/9 9/9 0009 0000 0000 24080 11729073 601038 23089 18022 78022
200 6/9 7/9 7/9 0009 0008 0006 71098 11880077 861039 37078 33089 71078
Average 30/36 34/36 34/36 0006 0002 0002 26046 910018 372005 21006 17058 73047

is that the instances in Set II no longer have the peculiarity
that very few nodes generate a large proportion of the total
flow of the network, and thus the decision of where to
locate the hubs becomes much more difficult.

Table 6 shows that B2 is still superior to B1 and that the
instances of Set III are the most difficult of the test bed.
This translates into a smaller percentage of closed hubs and
into much longer CPU times.

To better analyze the limit of our algorithm, we have
run a final series of computational experiments using the
36 instances of Set I with �H � = 350, 400, 450, and 500.
Given that algorithm B2 has proven to be the best version

Table 6. Summary results of 36 instances of Set III with �H � = 50, 100, 150, and 200.

Optimal found Average % gap Average time (sec.) Average iterations

�H � Heur B1 B2 Heur B1 B2 Heur B1 B2 B1 B2 % Closed hubs

50 8/9 9/9 9/9 0006 0000 0000 0085 8070 8022 10089 10089 61056
100 7/9 9/9 9/9 0004 0000 0000 8051 56060 42073 16011 12000 61033
150 7/9 9/9 9/9 0001 0000 0000 30008 51373033 11226042 34089 23044 63056
200 7/9 7/9 8/9 0014 0009 0002 70000 51912076 21727085 38056 34067 63067
Average 29/36 34/36 35/36 0006 0002 0000 27036 21837085 11001031 25011 20025 62053

Table 7. Summary results of 36 instances of Set I with �H � = 350, 400, 450, and 500.

Optimal found Average % gap Average time (sec.) Average iterations

�H � Heur B2 Heur B2 Heur B2 B2 % Closed hubs

350 6/9 7/9 0033 0027 359024 321141039 30033 69011
400 8/9 8/9 0004 0003 610069 411844017 31067 78089
450 5/9 5/9 0017 0023 11100041 191819068 33067 75038
500 6/9 6/9 0012 0023 912002 311108020 23071 64069
Average 25/36 26/36 0016 0019 745059 311228036 29085 72002

of our Benders decomposition algorithm, these experiments
were performed only with this variant. The results of these
experiments are summarized in Table 7. They confirm the
efficiency and robustness of our algorithm on very large-
scale instances. We have proved optimality of 26 out of the
36 considered instances. For the remaining instances, the
relative duality gap is below 1%, with a maximum of 1.5%
in one instance. The heuristic was able to obtain the opti-
mal or best-known solution in 25 cases out of 36, and the
relative deviation for the remaining instances never exceeds
0.7%, except for one instance with 2.56%. From column
% Closed hub we note that the elimination tests can again
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close a considerable number of candidate hub nodes. The
percent of closed hubs ranges from 2% to 98%, with an
average of 72.02%.

6. Conclusions
We have presented an exact Benders decomposition algo-
rithm for large-scale instances of the classical uncapacitated
hub location problem with multiple assignments. A stan-
dard Benders decomposition was enhanced through the
incorporation of several algorithmic features such as a mul-
ticut reformulation, the generation of stronger optimality
cuts, the incorporation of reduction tests, and the use of a
heuristic procedure. Extensive computational experiments
on a large set of existing and new instances with up to 500
nodes and 250,000 commodities have clearly confirmed the
efficiency and robustness of the algorithm. To the best of
our knowledge, the new instances are by far the largest
and most difficult ever solved for any type of hub location
problem.

7. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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