
USING BRANCH-AND-PRICE-AND-CUT TO SOLVE ORIGIN-
DESTINATION INTEGER MULTICOMMODITY FLOW PROBLEMS

CYNTHIA BARNHART
Massachusetts Institute of Technology, Center for Transportation Studies, Cambridge, Massachusetts 02139, cbarnhar@mit.edu

CHRISTOPHER A. HANE
CAPS Logistics, Atlanta, Georgia 30334, chane@baan.com

PAMELA H. VANCE
Auburn University, Industrial and Systems Engineering, Auburn, Alabama 36849, Pamela_Vance@bus.emory.edu

(Received July 1996; revisions received May 1997, February 1998; accepted July 1998)

We present a column-generation model and branch-and-price-and-cut algorithm for origin-destination integer multicommodity flow
problems. The origin-destination integer multicommodity flow problem is a constrained version of the linear multicommodity flow
problem in which flow of a commodity (defined in this case by an origin-destination pair) may use only one path from origin to
destination. Branch-and-price-and-cut is a variant of branch-and-bound, with bounds provided by solving linear programs using
column-and-cut generation at nodes of the branch-and-bound tree. Because our model contains one variable for each origin-
destination path, for every commodity, the linear programming relaxations at nodes of the branch-and-bound tree are solved using
column generation, i.e., implicit pricing of nonbasic variables to generate new columns or to prove LP optimality. We devise a new
branching rule that allows columns to be generated efficiently at each node of the branch-and-bound tree. Then, we describe cuts
(cover inequalities) that can be generated at each node of the branch-and-bound tree. These cuts help to strengthen the linear
programming relaxation and to mitigate the effects of problem symmetry. We detail the implementation of our combined column-
and-cut generation method and present computational results for a set of test problems arising from telecommunications applica-
tions. We illustrate the value of our branching rule when used to find a heuristic solution and compare branch-and-price and
branch-and-price-and-cut methods to find optimal solutions for highly capacitated problems.

1. INTRODUCTION

Linear multicommodity flow problems are linear programs
(LPs) that can be characterized by a set of commodities
and an underlying network. The objective is to flow the
commodities through the network at minimum cost with-
out exceeding arc capacities. A comprehensive survey of
linear multicommodity flow models and solution proce-
dures was presented in Ahuja et al. (1993).

In this paper, we consider an origin-destination inte-
ger multicommodity flow (ODIMCF) problem, a con-
strained version of the linear multicommodity flow
problem in which flow of a commodity (defined in this
case by an origin-destination pair) may use only one path
from origin to destination. ODIMCF problems are preva-
lent in a number of application contexts, including trans-
portation, communication, and production. Example
applications include:

1. Bandwidth packing problems require that bandwidth be
allocated in telecommunications networks to maximize
total revenue. The demands, or calls, on the networks
are the commodities and the objective is to route the
calls from their origin to their destination. In the case of
video teleconferencing, call splitting is not allowed, and
so each call must be routed on exactly one network
path.

2. Package flow problems, such as those arising in express
package delivery operations, require that shipments,
each with a specific origin and destination, be routed
over a transportation network. Each set of packages
with a common origin-destination pair can be consid-
ered as a commodity and often must be assigned to a
single network path to facilitate operations and ensure
customer satisfaction.

We present a column-generation model for the class of
integer multicommodity flow problems described above
and a branch-and-bound solution approach involving col-
umn and row generation. Column-generation models, such
as those presented in Ahuja et al. (1993), Barnhart et al.
(1995a), and Jones et al. (1993), have been used exten-
sively in modeling and solving large versions of the linear
MCF problem. In column generation, sets of columns are
left out of the LP because there are too many columns to
handle efficiently, and most of them will have their associ-
ated variable equal to zero in an optimal solution. Then to
check the optimality of an LP solution, a subproblem
called the pricing problem, which is a separation problem
for the dual LP, is solved to try to identify columns to
enter the basis. If such columns are found, the LP is
reoptimized.

Subject classifications: Networks/graphs: multicommodity. Programming, integer: branch-and-bound. Programming, linear: column generation.
Area of review: OPTIMIZATION

318
Operations Research, q 2000 INFORMS 0030-364X/00/4802-0318 $05.00
Vol. 48, No. 2, March–April 2000, pp. 318–326 1526-5463 electronic ISSN

The ability to solve large MCF LPs allows us to consider
the solution of large ODIMCF problems. We design, im-
plement, and test a new branch-and-price-and-cut solution
approach. Branch-and-price, a generalization of branch-
and-bound with LP relaxations, allows column generation
to be applied throughout the branch-and-bound tree.
Branching occurs when no columns price out to enter the
basis and the LP solution does not satisfy the integrality
conditions. Branch-and-cut, another variant of branch-
and-bound, allows valid inequalities—or cuts—to be
added throughout the branch-and-bound tree. Our cuts
are designed to eliminate problem symmetry, improving
the effectiveness of the branching decisions. Problem sym-
metry causes branch-and-bound to perform poorly because
the problem barely changes after branching (Barnhart et
al. 1995, Vance et al. 1994). Branch-and-price-and-cut
combines column and row generation to yield very strong
LP relaxations at nodes of the branch-and-bound tree.
However, synthesizing the two generation processes is
nontrivial. Only a limited number of applications of com-
bined row and column generation in solving integer pro-
grams can be found in the literature, including those
presented in the survey of Desrosiers et al. (1995) and in
Mehrotra (1992) and Nemhauser and Park (1991).

We implement and test our branch-and-price-and-cut
(BPC) solution procedure using a set of test problems
representative of problems arising in the telecommunica-
tions industry. We demonstrate that when column genera-
tion is performed only at the root node and a standard
branch-and-bound approach is used, it is not possible to
identify feasible IP solutions for some large problems. In
contrast, we show that our solution procedure, allowing
column and row generation at each node of the tree, pro-
duces near-optimal solutions to our test problems with
reasonable run times on workstation class computers.

1.1. Contributions

In our view, the contributions of this paper include:

Y Development of an optimization solution strategy for an
important class of problems called origin-destination in-
teger multicommodity flow problems. The novel fea-
tures of our branch-and-price-and-cut algorithm include:

1. A pricing algorithm that does not change even as
cuts are added, and similarly, a separation algorithm
that does not change even as columns are added.
Often with branch-and-price-and-cut, an objective is
to maintain the form of the pricing and separation
algorithms as columns and cuts are added so that
algorithmic complexity and run times do not increase
as the algorithm progresses because the result may
cause large applications to be intractable.

2. A more generalized branching strategy than has been
presented in the literature, with benefits including:
— Our branching rule is enforced without adding

constraints to the problem, thereby maintaining
the form of the pricing problem.

— Our branching is more effective than conven-
tional branching based on variable dichotomy
because the number of potential branches is
far less and the solution space is more evenly
partitioned.

3. Lifted cover inequalities that help to strengthen
the LP relaxation of our model and help to over-
come problem symmetry.

Y Implementation and evaluation of our algorithm using
test problems arising from the telecommunications in-
dustry. Our results show that with our procedure, near-
optimal integer solutions can be obtained in reasonable
run times on workstation class computers.

1.2. Outline

The remainder of the paper is organized as follows. In §2,
we present two formulations for the ODIMCF problem. In
§3, we detail the approach for obtaining ODIMCF solu-
tions using a branch-and-price solution approach. Branch-
ing rules are introduced and details of how to generate
columns satisfying the branching decisions are provided.
Branch selection, node selection, and branch-and-bound
termination are also discussed. Computational results to
evaluate our branching rule on a static set of columns and
our branch-and-price procedure are presented in §4. Next,
in §5, the branch-and-price procedure is enhanced to in-
clude cut generation at nodes of the tree. Details of the
cuts and their effect on column generation are included. In
§6, we describe the performance of our enhanced branch-
and-price-and-cut procedure. Finally, in §7 we summarize
the results of our experiments.

2. ODIMCF PROBLEM FORMULATION

We consider two different formulations for the ODIMCF
problem: the node-arc or conventional formulation and the
path or column-generation formulation. We use the con-
ventional formulation to design our branching strategies
for the ODIMCF problem and derive our cutting planes.
The column-generation formulation is used to solve the
ODIMCF LP relaxation.

The origin-destination integer multicommodity flow for-
mulation, denoted ODIMCF, is defined over the network
G comprising node set N and arc set A. ODIMCF contains
binary decision variables x, where xij

k equals 1 if the entire
quantity (denoted qk) of commodity k is assigned to arc ij,
and equals 0 otherwise. The cost of assigning commodity k
in its entirety to arc ij equals qk times the unit flow cost for
arc ij, denoted cij

k. Arc ij has capacity dij, for all ij [A.
Node i has supply of commodity k, denoted bi

k, equal to 1
if i is the origin node for k, equal to 21 if i is the destina-
tion node for k, and equal to 0 otherwise.

The conventional or node-arc ODIMCF formulation is:

min O
k[K

O
ij[A

c ij
kq kx ij

k, (1)

s.t.

319BARNHART, HANE, AND VANCE /

O
k[K

q kx ij
k < d ij , ; ij [A , (2)

O
ij[A

x ij
k 2 O

ji[A
x ji

k 5 b i
k, ; i [N, ; k [K , (3)

x ij
k [$0, 1% , ; ij [A , ; k [K . (4)

Note that without restricting generality of the problem,
we model the arc flow variables x as binary variables. To
do this, we scale the demand for each commodity to 1 and
accordingly adjust the coefficients in the objective function
(1) and in constraints (2).

To contrast, the path-based or column-generation
ODIMCF formulation has fewer constraints and far more
variables. Again, the underlying network G is composed of
node set N and arc set A, with qk representing the quantity
of commodity k. P(k) represents the set of all origin-
destination paths in G for k, for all k [K. In the column-
generation model, the binary decision variables are
denoted yp

k, where yp
k equals 1 if all qk units of commodity k

are assigned to path p [P(k), and equals 0 otherwise. The
cost of assigning commodity k in its entirety to path p
equals qk times the unit flow cost for path p, denoted cp

k.
As before, arc ij has capacity dij, for all ij [A. Finally, dij

p

is equal to 1 if arc ij is contained in path p [P(k), for
some k [K and is equal to 0 otherwise.

The path or column-generation ODIMCF formulation is
then:

min O
k[K

O
p[P~k!

c p
kq ky p

k, (5)

s.t.

O
k[K

O
p[P~k!

q ky p
kd ij

p < d ij , ; ij [A , (6)

O
p[P~k!

y p
k 5 1, ; k [K , (7)

y p
k [$0, 1% , ; p [P~k! , ; k [K . (8)

For large-scale transportation, communication, and pro-
duction applications, the LP relaxation of the conventional
ODIMCF formulation contains a large number of con-
straints (equal to the number of arcs plus the product of
the number of nodes and commodities) and a large num-
ber of variables (equal to the product of the number of
arcs and commodities.) The column-generation LP relax-
ation, however, contains a moderate number of constraints
(one for each commodity and one for each arc) and a huge
number of variables (one for each path for each commod-
ity.) Without decomposition, these LP relaxations may re-
quire excessive memory and/or run times to solve.

3. SOLUTION APPROACH

We use a branch-and-bound approach to solve the
ODIMCF problems, with bounds provided by solving a LP
relaxation, called the subproblem, at each node of the
branch-and-bound tree.

3.1. LP Solution

We choose to use the column-generation solution ap-
proach to solve the LP relaxation of the path-based formu-
lation of ODIMCF. The general idea of column
generation is that optimal solutions to large LPs can be
obtained without explicitly including all columns (i.e., vari-
ables) in the constraint matrix (called the master problem
or MP). In fact, only a very small subset of all columns will
be in an optimal solution, and all other (nonbasic) columns
can be ignored. In a minimization problem, this implies
that all columns with positive reduced cost can be ignored.

We refer to a MP with only a subset of its columns as
the restricted master problem or RMP. The column-
generation algorithm solves the LP relaxation of MP by
solving the LP relaxations of several RMPs. After finding
the LP solution to a RMP, we determine whether there
are any columns not included in the RMP with negative
reduced cost. If none can be found, the current LP solu-
tion to the RMP is optimal for MP also. If one or more
such columns do exist, they are added to RMP and the
process is repeated.

For any RMP, let 2pij represent the nonnegative dual
variables associated with constraints (6) and sk represent
the unrestricted dual variables associated with constraints
(7). Because cp

k can be represented as ¥ij[A cij
kdij

p, the re-
duced cost of column p for commodity k, denoted c#p

k, is:

c# p
k 5 O

ij[A
q k~c ij

k 1 p ij !d ij
p 2 s k, ; p [P~k!, ; k [K. (9)

For each RMP solution generated, the pricing problem
can be solved efficiently. Columns that price out can be
identified by solving one shortest path problem for each
commodity k [K over a network with arc costs equal to cij

k

1 pij, for each ij [A. Denote the cost (using arc costs cij
k

1 pij) of the shortest path pp for any commodity k as cpp
k .

Then, if for all k [K,

c pp
k q k 2 s k > 0,

the MP is solved. Otherwise, the MP is not solved, and for
each k [K with

c pp
k q k 2 s k , 0,

path pp [P(k) is added to the RMP.

3.2. IP Solution

Because the multicommodity flow LPs are solved using
column generation, if we wish to find optimal solutions,
our branch-and-bound procedure must allow columns to
be generated at each node of the tree. This approach is
referred to as branch-and-price. For general expositions of
branch-and-price methodology, see Barnhart et al. (1995),
Vanderbeck and Wolsey (1994), and Desrosiers et al.
(1995).

The key to developing a branch-and-price procedure is
identifying a branching rule that eliminates the current
fractional solution without compromising the tractability
of the pricing problem. Barnhart et al. (1995) develop

320 / BARNHART, HANE, AND VANCE

branching rules for a number of different master problem
structures. They also survey specialized algorithms that
have appeared in the literature for a broad range of
applications.

Parker and Ryan (1994) present a branch-and-price al-
gorithm for the bandwidth packing problem, which is
closely related to ODIMCF. The bandwidth packing prob-
lem is a version of ODIMCF where the objective is to
choose which of a set of commodities to send in order to
maximize revenue. They use a path-based formulation.
Their branching scheme selects a fractional path and cre-
ates a number of new subproblems equal to the length of
the path plus one. On one branch the path is fixed into the
solution, and on each other branch one of the arcs on the
path is forbidden. To limit time spent searching the tree,
they use a dynamic optimality tolerance. They report the
solution of 14 problems with as many as 93 commodities
on networks with up to 29 nodes and 42 arcs. All but two
of the instances are solved to within 95% of optimality.

Branching

Applying a standard branch-and-bound procedure to the
restricted master problem with its existing columns will not
guarantee an optimal (or feasible) solution. After the
branching decision modifies RMP, it may be the case that
there exists a column for MP that prices out favorably but
is not present in RMP. Therefore, to find an optimal solu-
tion we must maintain the ability to solve the pricing prob-
lem after branching. The importance of generating
columns after the initial LP has been solved is demon-
strated for airline crew scheduling applications in Vance et
al. (1994). They were unable to find feasible IP solutions
using just the columns generated to solve the initial LP
relaxation. They developed a branch-and-price approach
for crew scheduling problems in which they generated ad-
ditional columns whenever the LP bound at a node ex-
ceeded a preset IP target objective value.

The difficulty in incorporating column generation with
branch-and-bound is that conventional integer program-
ming branching on variables may not be effective because
fixing variables can destroy the structure of the pricing
problem. To illustrate, consider branching based on vari-
able dichotomy in which one branch forces commodity k to
be assigned to path p, i.e., yp

k 5 1, and the other branch
does not allow commodity k to use path p, i.e., yp

k 5 0. The
first branch is easy to enforce because no additional paths
need to be generated once k is assigned to path p. The
latter branch, however, cannot be enforced if the pricing
problem is solved as a shortest path problem. There is no
guarantee that the solution to the shortest path problem is
not path p. In fact, it is likely that the shortest path for k is
indeed path p. As a result, to enforce a branching decision,
the pricing problem solution must be achieved using a next
shortest path procedure. In general, for a subproblem in-
volving a set of a branching decisions, the pricing problem
solution must be achieved using a kth shortest path
procedure.

For the multicommodity flow application, our objective
is to ensure that the pricing problem for the LP with the
branching decisions included can be solved efficiently with
a shortest path procedure. That is, our objective is to de-
sign a branching rule that does not destroy the structure of
the pricing problem. In general, this can be achieved by
basing our branching rules on variables in the original for-
mulation and not on variables in the column-generation
formulation (Barnhart et al. 1995, Desrosiers et al. 1995).
This means that our branching rules should be based on
the arc flow variables xij

k.
Consider then branching based on variable dichotomy in

the original variables. On one branch, we would force flow
of commodity k to use arc ij, i.e., xij

k 5 1; and on the other
branch, we wouldn’t allow commodity k to use arc ij, i.e.,
xij

k 5 0. This time, the second branch is easy to enforce in
the pricing problem by setting the cost of arc ij for k to a
very large value. Enforcing the first branching decision,
however, makes the pricing problem intractable. Whereas
a shortest path containing an arc ij can be found by solving
two shortest paths procedures, one from node j and one
from the origin node of k to node i, it is not possible to
find efficiently the shortest path containing a set of arcs, as
required in subproblems at depths of two or more in the
tree.

We propose a new branching strategy that:

(1) is based on the arc flow variables in the original
problem formulation; and

(2) is compatible with the pricing problem solution pro-
cedure; that is, can be enforced without destroying the
structure of the pricing problem.

We derive our branching rule by observing that if com-
modity k is assigned to more than one path, say for the
purposes of this discussion, to two paths, then the two
paths differ by at least one arc and, further, that the two
paths have at least two nodes in common (i.e., the origin
and destination nodes are contained in both paths.) We
define the first node at which the two paths split as the
divergence node. Given any two distinct paths p1 and p2 for
k, we can find their divergence node by tracing each path,
beginning with the origin node of k, one arc at a time until
two different arcs called a1 and a2 are identified for each
path. The from node of these arcs is the divergence node,
denoted d. We denote the set of arcs originating at d as
A(d) and let A(d, a1) and A(d, a2) represent some parti-
tion of A(d) such that the subset A(d, a1) contains a1 and
the subset A(d, a2) contains a2. We branch creating two
subproblems. For the first we require

O
pùA~d,a1!Þ0

y p
k 5 0,

and for the second we require

O
pùA~d,a2!Þ0

y p
k 5 0.

321BARNHART, HANE, AND VANCE /

On the first branch we do not allow k to use any of the
arcs in A(d, a1), and similarly on the second branch we do
not allow k to use any of the arcs in A(d, a2). Note that
these decisions do not require that k use any of the arcs in
A(d); that is, a path for k not containing node d is feasible
for both of the subproblems.

The resulting division of the problem is valid because:

(1) if the LP solution is fractional, we can always find a
divergence node d and a partition of A(d) that will elimi-
nate the fractional solution; and

(2) there are a finite number of branches because there
are a finite number of arcs and commodities.

A major benefit of our branching rule is that it more
evenly divides the problem because we branch on forbid-
ding a set of arcs rather than a single arc. Forbidding a set
of arcs may achieve faster convergence than forbidding a
single arc because the exclusion of a single arc may not
have much impact. Note that forbidding a single arc is a
special case of our strategy where uA(d, a1)u 5 1 or uA(d,
a2)u 5 1.

This new branching rule is a generalization of the Ryan
and Foster (1981) rule for master problems with set parti-
tioning structure. In their rule, they require two rows of
the master problems to be covered by the same column on
one branch and covered by different columns on the other.
This rule is analogous to requiring/forbidding arcs for a
commodity in ODIMCF. As we have pointed out, this
approach does not allow us to maintain the shortest path
structure of the pricing problem; however, our generaliza-
tion in which we forbid subsets of arcs and never require
the use of any arc does maintain the pricing problem
structure.

Subproblem Solution

At each node of the branch-and-bound tree, a restricted
multicommodity flow LP, called a subproblem, must be
solved. Because the subproblem solution must satisfy the
set of branching decisions made along its predecessor path
in the tree, it is necessary to restrict the column-generation
algorithm so that variables violating these rules are not
generated in solving the pricing problem. The challenge is
to ensure this without increasing the complexity of the
pricing problem solution algorithm. To achieve this, ob-
serve that every branch forbids the assignment of flow of
some commodity to one or more arcs. That means at any
node in the tree, it is possible to satisfy the branching
decisions by restricting flow of possibly several commodi-
ties, where the flow restriction for a single commodity is to
forbid use of a (possibly large) set of arcs. By setting the
commodity’s cost on each forbidden arc to a very high
value, the pricing problem can still be solved using a short-
est path algorithm. As long as a feasible solution exists for
that commodity, the shortest path generated will not vio-
late the branching decisions. Then, all the paths generated
for a subproblem will satisfy all the imposed restrictions.

Branch Selection. Given a fractional LP solution, we
select the next branch as follows:

Step 1. Among the commodities whose flow is split, iden-
tify the commodity k with the greatest flow, denoted qk.

Step 2. Identify the two paths p and p9 with the greatest
fractions yp

k and yp9
k of the flow of commodity k. Without

loss of generality, let path p be shorter than p9.

Step 3. Locate the divergence node d on path p for
commodity k. Let arcs a1 and a2 be incident to d and in
paths p and p9, respectively.

Step 4. By dividing the set of arcs incident to node d,
construct set A(d, a1) containing arc a1 and set A(d, a2)
with arc a2. Let the size of the two sets be roughly equal.

Step 5. Create two new nodes, one where the arcs in
A(d, a1) are forbidden for commodity k and one where the
arcs in A(d, a2) are forbidden for commodity k.

Node Selection. A depth-first search of the tree is used
throughout the algorithm. We choose to search the side of
the tree where the shorter path p is still allowed (i.e., we
choose the side where the arcs in A(d, a2) are forbidden.)
In many integer programming algorithms, the nodes are
selected in the order of the best LP bound once a feasible
solution has been found. In our experience, changing to a
best-bound search gave an improvement in the number of
nodes searched for the problems we were able to solve
optimally, but it resulted in a degradation in solution qual-
ity for those that were stopped (by the time limit) before
proving optimality. We believe there were two main rea-
sons for this degradation. First, a best-bound search will
generally be able to search many fewer nodes within a
given amount of time than a depth-first search. This is
largely because in a depth-first search, information from
the LP solution of the parent node is readily available to
speed up the solution of the LP relaxation at each node.
Second, best-bound tends to search nodes that are rela-
tively high in the tree, but for this application it was nec-
essary to go deep in the tree to find integer solutions.

Branch-and-Price Termination. Our branch-and-price
solution procedure is terminated when either a provably
optimal integer solution is found or the run time exceeds
one hour on a workstation class computer.

3.3. Computational Results: Branch-and-Price

We ran several computational trials on the set of 15 test
problems, whose characteristics (commodities, nodes, arcs,
saturated arcs) are given in Table 1. In the first 14 prob-
lems, all the arcs are capacitated, whereas in the last prob-
lem, 96 of the 130 arcs are capacitated. The column
“saturated arcs” gives the number of arcs that were filled
to capacity in the LP solution. The larger the number of
saturated arcs, the more difficult we would expect the in-
stance to be in general because more commodities will be
likely to have their flow split. The first 14 problems are the
same test problems used by Parker and Ryan (1994). They

322 / BARNHART, HANE, AND VANCE

were generated to be representative of bandwidth packing
problems arising from a teleconferencing application. We
converted these problems into ODIMCF problems by add-
ing an artificial arc for each commodity with cost equal to
the revenue associated with the commodity; all original
arcs had cost zero. Thus the objective was to minimize the
value of the calls that were not sent (i.e., those that had to
use the artificial arcs). The final test problem is much
larger. It came from a message routing problem arising in
telecommunications. The commodities were sets of mes-
sages that share a common origin and destination. In this
application, commodity splitting is permissible. We treated
this problem as an ODIMCF to evaluate the performance
of our approach on a larger problem.

First, to evaluate our branching rule, we compared a
branch-and-bound algorithm using our branching rule to a
standard branch-and-bound procedure. Specifically, the
standard algorithm was the default branching strategy used
by MINTO. In both algorithms, columns were generated
to solve the LP at the root node only and branch-and-
bound was applied to the resulting IP. Column generation
at the root node only is often used as a heuristic approach,

so we believed it would be worthwhile to determine
whether our branching ideas would be valuable to these
implementations. The results for branch-and-bound with
our branching rule and the default branching rule are
given in Table 2. The table displays the number of branch-
and-bound nodes searched, the gap between the optimal
integer solution and the solution obtained (entries re-
ported with an * are gaps between the optimal LP solution
and the solution obtained because the optimal IP solution
is unknown for these problems), and the CPU time in
seconds on an IBM RS6000/590 using MINTO 2.1 and
CPLEX 3.0. Solution times of less than one hour indicate
that optimal solutions are obtained for the resulting IP
composed only of the columns generated in solving the
root node LP. In general, compared to the customized
branch-and-bound, the standard branch-and-bound re-
quired more time to generate poorer quality solutions. A
case in point is problem 15, in which standard branch-and-
bound was unable to find a feasible solution within the one
hour allotted (after searching over a quarter of a million
nodes!), but the customized rule found a solution within
5% of the LP bound.

Table 3 gives computational results for our branch-and-
price algorithm. The number of columns generated, num-
ber of nodes searched, LP-IP gap, and CPU time on an
IBM RS6000/590 are given. We are able to prove optimal-
ity for 11 of the 15 test problems within one hour of CPU
time. It is interesting to note that for problems 6, 9, and 15
branch-and-bound was able to find better feasible solu-
tions in the time allowed. This is partly because of the
computational demands of the branch-and-price algo-
rithm, which requires a great deal of computational effort
at each node and is therefore generally able to search
many fewer nodes than the branch-and-bound approach
within the time limit. Of the bandwidth packing problems
we observe that 3, 6, and 9 are difficult instances. In fact,
these are the same instances that Parker and Ryan (1994)
also found to be difficult. They found solutions within

Table 1. Problem characteristics.

Problem Commodities Nodes Arcs Saturated Arcs

1 35 14 16 8
2 68 24 24 7
3 70 29 61 31
4 58 18 29 16
5 47 19 25 6
6 93 27 37 27
7 93 23 29 18
8 41 28 31 8
9 87 24 42 24

10 41 19 19 8
11 23 14 16 5
12 81 26 36 10
13 52 29 31 8
14 46 20 23 8
15 585 50 130 28

Table 2. Branch-and-bound: standard vs. custom branching.

Problem Columns

Custom Branching Standard Branching

Nodes Gap Time Nodes Gap Time

1 180 41 0.00% 0.69 47 0.00% 0.62
2 295 5 0.00% 0.58 9 0.00% 0.68
3 489 57404 10.70%* 2989.80 233571 12.34%* 3600.00
4 347 2712 0.75% 29.69 5412 0.75% 55.72
5 232 21 0.23% 0.63 93 0.23% 1.19
6 463 3462 1.45%* 55.74 256333 3.56%* 3600.00
7 439 7813 0.17% 101.73 69156 0.17% 854.84
8 195 7 0.00% 0.45 5 0.00% 0.42
9 464 20147 2.86%* 318.29 292445 3.16%* 3600.00

10 182 47 0.00% 0.67 312 0.00% 2.33
11 106 21 0.00% 0.36 18 0.00% 0.34
12 420 663 0.27% 10.80 3201 0.27% 46.39
13 253 125 0.00% 1.55 107 0.00% 1.46
14 225 82 0.22% 1.20 148 0.22% 1.62
15 2142 78577 4.76%* 3600.00 252648 — 3600.00

323BARNHART, HANE, AND VANCE /

11.5%, 7.1%, and 4.7% of optimality for these problems,
respectively. However, a direct comparison with their re-
sults is not appropriate because their algorithm did not
attempt to prove optimality. These are the three largest
problems in terms of number of arcs in the network and
are three of the five largest problems in terms of the num-
ber of commodities.

Symmetry Effects

We observed that when we disallowed one commodity
from a subset of arcs, the values of the LP solutions for the
two subproblems showed little or no change in objective
function value. We also found that while the split com-
modities were changing, the same arcs were showing up
repeatedly in the branching decisions. An explanation for
this can be seen by examining two subpaths s1 and s2, both
beginning with some node o and ending with some node d.
It is possible that both s1 and s2 are contained in origin-
destination paths for more than one, and maybe several,
commodities. Denote this set of commodities as K9. As-
sume without loss of generality that s1 has cost not greater
than that of s2. If in an LP solution, one or more arcs in s1

are saturated, then it is possible that some of the commod-
ities in K9 are assigned to s2. In this scenario, it is likely
that one of the commodities, call it k*, will be assigned to
both s1 and s2. When the branching decision forces k* off
subpath s1 (s2), the result is a solution with the same total
amount of flow assigned to subpaths s1 and s2, with the
only difference being that some other commodity k9 [

(K9\{k*}) has its flow split between the two subpaths. As
long as arc cost is not differentiated by commodity, the
costs of the solutions before and after branching will be
the same.

This ineffectiveness of the branching strategy results
from what is referred to as problem symmetry. Our remedy
is to generate cuts to combat this symmetry before branch-
ing so that meaningful progress can be made in improving
the LP bound as we go deeper in the tree.

4. BRANCH-AND-PRICE-AND-CUT

In the last decade, a great deal of attention has been given
to the “branch-and-cut” approach to solving MIPs. Hoff-
man and Padberg (1985) and Nemhauser and Wolsey
(1988) give general expositions of this methodology. The
basic idea of branch-and-cut is simple. Classes of valid
inequalities, preferably facets of the convex hull of feasible
solutions, are left out of the LP relaxation because there
are too many constraints to handle efficiently, and most of
them will not be binding in an optimal solution. Then, if an
optimal solution to an LP relaxation is infeasible to the IP,
a subproblem called the separation problem is solved to
try to identify violated inequalities in a class. If one or
more violated inequalities are found, some are added to
the LP to cut off the infeasible solution. Then the LP is
reoptimized. Branching occurs when no violated inequali-
ties are found to cut off an infeasible solution. Branch-and-
cut allows separation and cutting to be applied throughout
the branch-and-bound tree.

4.1. Lifted Cover Inequalities

Notice that the arc capacity constraints (2)

O
k[K

q kx ij
k < d ij , ; ij [A

in the node-arc formulation of ODIMCF are simply 0–1
knapsack inequalities. Thus, it is possible to use valid ine-
qualities for the knapsack problem to strengthen the node-
arc formulation of ODIMCF. One such class of valid
inequalities are lifted cover inequalities. For a given arc ij,
the set C # K is called a cover if ¥k[C qk . dij. The cover
C is minimal if for each l [C, ¥k[C qk 2 ql ¶ dij. Covers
give rise to a class of valid inequalities of the form

O
k[C

x ij
k < uC u 2 1,

called cover inequalities.
Now consider a LP solution to MCF. If the solution is

fractional, at least one commodity k has flow assigned to
more than one path. Consider one of these commodities,
denoted k*, and let path p* represent the shortest satu-
rated path to which k* is assigned. (A path is saturated if
one or more arcs contained in the path has flow at capac-
ity.) Such a path will always exist because k* is assigned to
more than one path and each subproblem solution mini-
mizes costs. Let a represent a saturated arc on path p*. If
k* is the only split commodity assigned to a and Ca is the
set of all commodities using a, then Ca is a cover and the
corresponding cover inequality is violated by the current
LP solution.

However, in general there may be more than one split
commodity assigned to the saturated arcs in a LP solution
to MCF so that no violated cover inequalities exist even
though the solution is nonintegral. This follows from the
fact that the cover inequalities do not in general define
facets or even high dimensional faces of the convex hull of

Table 3. Branch-and-price.

Problem Columns Nodes Gap Time

1 195 45 0.00% 1.61
2 295 5 0.00% 0.88
3 9088 7618 10.3% 3600.00
4 1936 1252 0.00% 115.00
5 261 19 0.00% 1.40
6 12353 13274 2.79% 3600.00
7 9188 12808 0.00% 2637.40
8 195 7 0.00% 0.68
9 19184 8512 6.0% 3600.00

10 185 51 0.00% 2.10
11 109 25 0.00% 0.61
12 5939 6405 0.00% 1145.70
13 287 133 0.00% 7.20
14 461 156 0.00% 8.76
15 5156 3194 26.94% 3600.00

324 / BARNHART, HANE, AND VANCE

feasible solutions to the knapsack problem. Cover inequal-
ities need to be lifted in order to obtain facets of the
knapsack polytope associated with an arc capacity con-
straint. A lifted cover inequality (LCI) is an inequality of
the form

O
k[C

x ij
k 1 O

k[C#
a k x ij

k < uC u 2 1,

where C is a minimal cover and C# 5 K \C. The lifting
coefficients, ak, are nonnegative integers that are deter-
mined by solving a series of knapsack problems (one for
each member of C#). In general, a single knapsack con-
straint may yield several minimal covers, and a single min-
imal cover may yield several LCIs, depending on the order
in which the lifting coefficients are calculated. Because
ODIMCF instances have a knapsack constraint for each
arc, there are too many LCIs to include explicitly in the
formulation.

Given a fractional solution to the knapsack problem, Gu
et al. (1995b) showed that finding a most violated LCI is
NP-hard. Therefore, we do not solve the separation prob-
lem for a fractional solution to ODIMCF exactly. Instead
we use a fast heuristic proposed in Gu et al. (1995a). We
attempt to identify one violated LCI for each saturated arc
in the LP solution.

4.2. Translating Inequalities to the Path-Based
Formulation

We can translate the lifted cover inequalities that we de-
rive for the node-arc formulation to valid inequalities for
the path-based formulation using the relationship between
the arc-flow (xij

k) and path-flow (yk
p) variables. Note that

x ij
k 5 O

p[P~k!

y p
kd ij

p.

In terms of the path-flow variables, a lifted cover inequal-
ity can be written as

O
k[C

O
p[P~k!

y p
kd ij

p 1 O
k[C#

a k O
p[P~k!

y p
kd ij

p < uC u 2 1.

LCIs are a well-known class of valid inequalities. How-
ever, to our knowledge this is the first time they have been
applied in the context of the path-based formulation of
ODIMCF. In general, as we pointed out earlier, very little
work has been done that incorporates both cutting and
column generation.

LCIs help to overcome problem symmetry by letting the
LP select which of the commodities should remain and
which should be removed from saturated arcs. This is more
effective than using branching to specify (combinatorially)
the set of commodities that will remain or be removed.

4.3. The Algorithm

At any node in the branch-and-bound tree, if no more
columns price out and the LP solution is fractional, we
attempt to identify a violated LCI for each saturated arc. If
any inequalities are found, we add them to the MCF sub-
problem (thereby cutting off the current solution). Then,

we reoptimize the LP. Observe that reoptimizing the LP
will require solving the pricing problem.

Consider a single lifted cover inequality. It has a coeffi-
cient of alm

k (where alm
k 5 1 if k [C) for every path

containing a specific arc, say lm, for commodity k. This
means that for each commodity k, the reduced cost com-
putation for every path containing lm must be adjusted by
the dual variable, call it 2glm, associated with the cover
row multiplied by alm

k . The pricing problem to determine
the minimum reduced cost path for each k can be solved
efficiently by executing a shortest path algorithm on the
network with the modified cost of arc lm for commodity k,
denoted c9lm

k as:

c9lm
k 5 c k

lm 1 p lm 1 a lm
k g lm ; k [K.

This process is extended for several lifted cover inequal-
ities by similarly modifying the cost of one arc for each
inequality.

This process of finding violated cover inequalities and
resolving the subproblem LP is repeated until no violated
inequalities are found. At that point, branching occurs.

5. COMPUTATIONAL RESULTS: BRANCH-AND-
PRICE-AND-CUT

Table 4 gives computational results for our branch-and-
price-and-cut algorithm. Again the number of columns
generated, number of nodes searched, LP-IP gap, and
CPU time on an IBM RS6000/590 are given. We observe
the following:

1. We are able to prove optimality for 4 of the 15 prob-
lems at the root node vs. 0 of 15 for branch-and-price.

2. Compared to branch-and-price, node counts gener-
ally decrease dramatically. For the 11 problems solved to
optimality, the average number of nodes explored de-
creases from 1,900 to 18.

3. Except for problem 15, we close the optimality gap
significantly for the problems we were unable to solve op-
timally. Problem 15 seems to be considerably more difficult
than the others. It has many more commodities and the

Table 4. Branch-and-price-and-cut.

Problem Columns Rows Nodes Gap Time

1 180 7 131 0.00% 0.50
2 295 3 1 0.00% 0.88
3 7378 835 1564 3.63% 3600.00
4 418 88 17 0.00% 7.41
5 232 9 1 0.00% 0.63
6 4345 728 5174 2.16% 3600.00
7 493 154 28 0.00% 23.11
8 206 8 3 0.00% 0.84
9 8186 751 2084 1.16% 3600.00

10 190 23 7 0.00% 1.11
11 106 7 1 0.00% 0.31
12 430 54 4 0.00% 4.25
13 253 7 1 0.00% 0.74
14 248 37 4 0.00% 2.36
15 5836 69 2396 — 3600.00

325BARNHART, HANE, AND VANCE /

arc capacities are relatively large compared to the com-
modity flow values. For problems 1 through 14, most arcs
can carry fewer than 5 commodities, whereas for problem
15, an arc can carry more than 20 commodities. This pre-
vents the lifted cover inequalities from being effective.

6. SUMMARY

In this paper we presented new algorithms for origin-
destination integer multicommodity flow problems. We
presented a new branching rule, developed a branch-and-
price algorithm, and enhanced the branch-and-price algo-
rithm by adding cuts. We showed that if columns are
generated only at the root node, our branching rule is
more effective at finding the optimal solution over the
resulting set of columns than a standard rule. This result is
important for practitioners who often use column genera-
tion at the root node only as a heuristic approach. We then
presented results for our branch-and-price algorithm. The
approach was able to solve most of the problems to prov-
able optimality; however, it required searching a large
number of nodes in many cases. We attributed this compu-
tational difficulty to problem symmetry. To combat this
symmetry, we added cuts to the problem and devised a
branch-and-price-and-cut algorithm that allows column
generation and cutting to be applied throughout the tree.
We found that the addition of cuts dramatically decreased
the number of nodes searched in the instances for which
the optimal solution was found and decreased the optimal-
ity gap for most of the other instances. The only exception
was the final problem. We speculate that the cuts were
ineffective in this case because the commodity volumes
were small relative to the arc capacities thus weakening
the cutting planes.

ACKNOWLEDGMENT

This research has been supported by the following grants
and contracts: NSF DDM-9058074, NSF DMI-95-2502.

REFERENCES

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network
Flows: Theory, Algorithms, and Applications. Prentice
Hall, Englewood Cliffs, NJ.

Appelgren, L. H. 1969. A column generation algorithm for a
ship scheduling problem. Transp. Sci. 3 53–68.

Barnhart, C., C. A. Hane, E. L. Johnson, G. Sigismondi.
1995a. A column generation and partitioning approach
for multi-commodity flow problems. Telecommunication
Systems 3 239–258.

——, E. L. Johnson, G. L. Nemhauser, G. L. Savelsbergh,
P. H. Vance. 1998. Branch-and-price: Column generation
for solving huge integer programs. Operations Research.
46(3) 316–329.

CPLEX Optimization, Inc. 1990. Using the CPLEXe Linear
Optimizer, Indine Village, NV.

Dantzig, G. B., R. M. Van Slyke. 1967. Generalized upper
bounding techniques. J. Comput. System Sci. 1 213–226.

——, P. Wolfe. 1960. Decomposition principle for linear pro-
grams. Oper. Res. 8 108–111.

Desrosiers, J., Y. Dumas, M. M. Solomon, F. Soumis. 1995.
Time constrained routing and scheduling. In Handbooks
in Operations Research and Management Science. M. E.
Ball, T. L. Magnanti, C. Monma, G. L. Nemhauser (eds.).
Elsevier, Amsterdam.

Gu, W., G. L. Nemhauser, M. W. P. Savelsbergh. 1995. Lifted
cover inequalities for 0–1 integer programs I: computa-
tion. Report COC-95-02, Industrial and Systems Engi-
neering, Georgia Institute of Technology, Atlanta, GA.

——, ——, ——. 1995. Lifted cover inequalities for 0–1 inte-
ger programs II: complexity. Report COC-95-03, Indus-
trial and Systems Engineering, Georgia Institute of
Technology, Atlanta, GA.

Hoffman, K., M. Padberg. 1985. LP-based combinatorial
problem solving. Ann. Oper. Res. 4 145–194.

IBM Corporation. 1992. Optimization Subroutine Library,
Guide and Reference, IBM Systems J. 31 (1) SC23-0519.

Jones, K. L., I. J. Lustig, J. M. Farvolden, W. B. Powell. 1993.
Multicommodity network flows: The impact of formula-
tion on decomposition. Mathematical Programming 62
95–117.

Mehrotra, A. 1992. Constrained Graph Partitioning: Decom-
position, Polyhedral Structure and Algorithms. Ph.D.
Thesis, Georgia Institute of Technology, Atlanta, GA.

Moore, E. 1957. The shortest path through a maze. Proc.
International Symposium on the Theory of Switching. Har-
vard University Press, Cambridge, MA.

Nemhauser, G. L., S. Park. 1991. A polyhedral approach to
edge coloring. Oper. Res. Lett. 10 315–322.

——, M. W. P. Savelsbergh, G. C. Sigismondi. 1994.
MINTO, a Mixed INTeger Optimizer. Oper. Res. Lett. 15.

——, L. A. Wolsey. 1988. Integer and Combinatorial Optimiza-
tion. Wiley, Chichester, UK.

Pape, U. 1974. Implementation and efficiency of Moore algo-
rithms for the shortest route problem. Mathematical Pro-
gramming 7 212–222.

Parker, M., J. A. Ryan. 1994. A column generation algorithm
for bandwidth packing. Telecommunications Systems 2
185–195.

Rosen, J. B. 1964. Primal partition programming for block
diagonal matrices. Numerische Mathematik 6 250–260.

Ryan, D. M., B. A. Foster. 1981. An integer programming
approach to scheduling. In Computer Scheduling of Public
Transport Urban Passenger Vehicle and Crew Scheduling.
A. Wren (ed.). North-Holland, Amsterdam.

Vance, P. H., C. Barnhart, E. L. Johnson, G. L. Nemhauser.
1997. Airline crew scheduling: A new formulation and
decomposition algorithm. Oper. Res. 45(2) 188–200.

——, ——, ——, ——, D. Mahidara, A. Krishna, R. Rebello.
1994. Exceptions in Crew Planning. ORSA/TIMS Detroit,
MI.

Vanderbeck, F., L. A. Wolsey. 1996. An exact algorithm for
IP column generation. Oper. Res. Letters 19 151–159.

326 / BARNHART, HANE, AND VANCE

