Optimization and Simulation
 Markov Chain Monte Carlo Methods

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne FEDIRALE DE LAUSANNE

Outline

(1) Motivation

(2) Introduction to Markov chains
(3) Stationary distributions

4 Metropolis-Hastings
(5) Gibbs sampling

6 Simulated annealing

The knapsack problem

- Patricia prepares a hike in the mountain.
- She has a knapsack with capacity $W \mathrm{~kg}$.
- She considers carrying a list of n items.
- Each item has a utility u_{i} and a weight w_{i}.
- What items should she take to maximize the total utility, while fitting in the knapsack?

Knapsack problem

Simulation

- Let \mathcal{X} be the set of all possible configurations (2^{n}).
- Define a probability distribution:

$$
P(x)=\frac{U(x)}{\sum_{y \in \mathcal{X}} U(y)}
$$

- Question: how to draw from this discrete random variable?

Outline

(1) Motivation

(2) Introduction to Markov chains

(3) Stationary distributions

(4) Metropolis-Hastings
(5) Gibbs sampling
(6) Simulated annealing

Markov Chains

Andrey Markov, 1856-1922, Russian mathematician.

Markov Chains: glossary

Stochastic process
$X_{t}, t=0,1, \ldots$, , collection of r.v. with same support, or states space $\{1, \ldots, i, \ldots, J\}$.

Markov process: (short memory)

$$
\operatorname{Pr}\left(X_{t}=i \mid X_{0}, \ldots, X_{t-1}\right)=\operatorname{Pr}\left(X_{t}=i \mid X_{t-1}\right)
$$

Homogeneous Markov process

$$
\operatorname{Pr}\left(X_{t}=j \mid X_{t-1}=i\right)=\operatorname{Pr}\left(X_{t+k}=j \mid X_{t-1+k}=i\right)=P_{i j} \forall t \geq 1, k \geq 0
$$

Markov Chains

Transition matrix

$$
P \in \mathbb{R}^{J \times J}
$$

Properties:

$$
\sum_{j=1}^{J} P_{i j}=1, i=1, \ldots, J, \quad P_{i j} \geq 0, \forall i, j
$$

Ergodicity

- If state j can be reached from state i with non zero probability, and i from j, we say that i communicates with j.
- Two states that communicate belong to the same class.
- A Markov chain is irreducible or ergodic if it contains only one class.
- With an ergodic chain, it is possible to go to every state from any state.

Markov Chains

Aperiodic

- $P_{i j}^{t}$ is the probability that the process reaches state j from i after t steps.
- Consider all t such that $P_{i i}^{t}>0$. The largest common divisor d is called the period of state i.
- A state with period 1 is aperiodic.
- If $P_{i i}>0$, state i is aperiodic.
- The period is the same for all states in the same class.
- Therefore, if the chain is irreducible, if one state is aperiodic, they all are.

A periodic chain

$$
\begin{aligned}
& P=\left(\begin{array}{ccccc}
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
1 & 0 & 0 & 0 & 0
\end{array}\right), d=3 . \\
& P_{i i}^{t}>0 \text { for } t=3,6,9,12,15 \ldots
\end{aligned}
$$

Another periodic chain

$$
\begin{aligned}
& P=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), d=2 . \\
& P_{i i}^{t}>0 \text { for } t=4,6,8,10,12, \ldots
\end{aligned}
$$

Intuition

Oscillation

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

The chain will not "converge" to something stable.

An aperiodic chain

$$
\begin{aligned}
& P=\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), d=1 \text {. } \\
& P_{i i}^{t}>0 \text { for } t=3,4,6,7,8,9,10,11,12 \ldots
\end{aligned}
$$

Outline

(1) Motivation
(2) Introduction to Markov chains
(3) Stationary distributions
4. Metropolis-Hastings
(5) Gibbs sampling

6 Simulated annealing

Markov Chains

Stationary probabilities

$$
\operatorname{Pr}(j)=\sum_{i=1}^{J} \operatorname{Pr}(j \mid i) \operatorname{Pr}(i)
$$

- Stationary probabilities: unique solution of the system

$$
\begin{gathered}
\pi_{j}=\sum_{i=1}^{J} P_{i j} \pi_{i}, \quad \forall j=1, \ldots, J \\
\sum_{j=1}^{J} \pi_{j}=1
\end{gathered}
$$

- Solution exists for any irreducible chain.

Example

- A machine can be in 4 states with respect to wear
- perfect condition,
- partially damaged,
- seriously damaged,
- completely useless.
- The degradation process can be modeled by an irreducible aperiodic homogeneous Markov process, with the following transition matrix:

$$
P=\left(\begin{array}{llll}
0.95 & 0.04 & 0.01 & 0.0 \\
0.0 & 0.90 & 0.05 & 0.05 \\
0.0 & 0.0 & 0.80 & 0.20 \\
1.0 & 0.0 & 0.0 & 0.0
\end{array}\right)
$$

Example

Stationary distribution: $\left(\frac{5}{8}, \frac{1}{4}, \frac{3}{32}, \frac{1}{32}\right)$

$$
\left(\frac{5}{8}, \frac{1}{4}, \frac{3}{32}, \frac{1}{32}\right)\left(\begin{array}{llll}
0.95 & 0.04 & 0.01 & 0.0 \\
0.0 & 0.90 & 0.05 & 0.05 \\
0.0 & 0.0 & 0.80 & 0.20 \\
1.0 & 0.0 & 0.0 & 0.0
\end{array}\right)=\left(\frac{5}{8}, \frac{1}{4}, \frac{3}{32}, \frac{1}{32}\right)
$$

- Machine in perfect condition 5 days out of 8 , in average.
- Repair occurs in average every 32 days

From now on: Markov process = irreducible aperiodic homogeneous Markov process

Markov Chains

Detailed balance equations
Consider the following system of equations:

$$
\begin{equation*}
x_{i} P_{i j}=x_{j} P_{j i}, \quad i \neq j, \quad \sum_{i=1}^{J} x_{i}=1 \tag{2}
\end{equation*}
$$

We sum over i :

$$
\sum_{i=1}^{J} x_{i} P_{i j}=x_{j} \sum_{i=1}^{J} P_{j i}=x_{j}
$$

If (2) has a solution, it is also a solution of (1). As π is the unique solution of (1) then $x=\pi$.

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad i \neq j
$$

The chain is said time reversible

Stationary distributions

Property

$$
\pi_{j}=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=j\right) j=1, \ldots, J
$$

Ergodicity

- Let f be any function on the state space.
- Then, with probability 1 ,

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^{T} f\left(X_{t}\right)=\sum_{j=1}^{J} \pi_{j} f(j)
$$

- Computing the expectation of a function of the stationary states is the same as to take the average of the values along a trajectory of the process.

Example: $T=100$

Example: $T=1000$

Example: $T=10000$

A periodic example

It does not work for periodic chains

$$
\begin{aligned}
P & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\operatorname{Pr}\left(X_{t}=1\right) & = \begin{cases}1 & \text { if } t \text { is odd } \\
0 & \text { if } t \text { is even }\end{cases} \\
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}\right. & =1) \text { does not exist }
\end{aligned}
$$

Staitonary distribution

$$
\pi=\binom{0.5}{0.5}
$$

Outline

(1) Motivation

(2) Introduction to Markov chains

3 Stationary distributions
4) Metropolis-Hastings
(5) Gibbs sampling

6 Simulated annealing

Simulation

Motivation

- Sample from very large discrete sets (e.g. sample paths between an origin and a destination).
- Full enumeration of the set is infeasible.

Procedure

- We want to simulate a r.v. X with pmf

$$
\operatorname{Pr}(X=j)=p_{j} .
$$

- We generate a Markov process with limiting probabilities p_{j} (how?)
- We simulate the evolution of the process.

$$
p_{j}=\pi_{j}=\lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t}=j\right) j=1, \ldots, J
$$

Simulation

Assume that we are interested in simulating

$$
\mathrm{E}[f(X)]=\sum_{j=1}^{J} f(j) p_{j} .
$$

We use ergodicity to estimate it with

$$
\frac{1}{T} \sum_{t=1}^{T} f\left(X_{t}\right)
$$

Drop early states (see above example)
Better estimate:

$$
\frac{1}{T} \sum_{t=1+k}^{T+k} f\left(X_{t}\right)
$$

Metropolis-Hastings

Nicholas Metropolis 1915-1999

W. Keith Hastings

1930 -

Metropolis-Hastings

Context

- Let $b_{j}, j=1, \ldots, J$ be positive numbers.
- Let $B=\sum_{j} b_{j}$. If J is huge, B cannot be computed.
- Let $\pi_{j}=b_{j} / B$.
- We want to simulate a r.v. with pmf π_{j}.

Explore the set

- Consider a Markov process on $\{1, \ldots, J\}$ with transition probability Q.
- Designed to explore the space $\{1, \ldots, J\}$ efficiently
- Not too fast (and miss important points to sample)
- Not too slowly (and take forever to reach important points)

Metropolis-Hastings

Define another Markov process

- Based on the exact same states $\{1, \ldots, J\}$ as the previous ones
- Assume the process is in state i, that is $X_{t}=i$.
- Simulate the (candidate) next state j according to Q.
- Define

$$
X_{t+1}=\left\{\begin{aligned}
j & \text { with probability } \alpha_{i j} \\
i & \text { with probability } 1-\alpha_{i j}
\end{aligned}\right.
$$

Metropolis-Hastings

Transition probability P

$$
\begin{array}{ll}
P_{i j}=Q_{i j} \alpha_{i j} & \text { if } i \neq j \\
P_{i i}=Q_{i i} \alpha_{i i}+\sum_{\ell \neq i} Q_{i \ell}\left(1-\alpha_{i \ell}\right) & \text { otherwise }
\end{array}
$$

Must verify the property

$$
\begin{aligned}
1=\sum_{j} P_{i j} & =P_{i i}+\sum_{j \neq i} P_{i j} \\
& =Q_{i i} \alpha_{i i}+\sum_{\ell \neq i} Q_{i \ell}\left(1-\alpha_{i \ell}\right)+\sum_{j \neq i} Q_{i j} \alpha_{i j} \\
& =Q_{i i} \alpha_{i i}+\sum_{\ell \neq i} Q_{i \ell}-\sum_{\ell \neq i} Q_{i \ell} \alpha_{i \ell}+\sum_{j \neq i} Q_{i j} \alpha_{i j} \\
& =Q_{i i} \alpha_{i i}+\sum_{\ell \neq i} Q_{i \ell}
\end{aligned}
$$

As $\sum_{j} Q_{i j}=1$, we have $\alpha_{i i}=1$.

Metropolis-Hastings

Time reversibility

$$
\pi_{i} P_{i j}=\pi_{j} P_{j i}, \quad i \neq j
$$

that is

$$
\pi_{i} Q_{i j} \alpha_{i j}=\pi_{j} Q_{j i} \alpha_{j i}, \quad i \neq j
$$

It is satisfied if

$$
\alpha_{i j}=\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}} \text { and } \alpha_{j i}=1
$$

or

$$
\frac{\pi_{i} Q_{i j}}{\pi_{j} Q_{j i}}=\alpha_{j i} \text { and } \alpha_{i j}=1
$$

Metropolis-Hastings

As $\alpha_{i j}$ is a probability

$$
\alpha_{i j}=\min \left(\frac{\pi_{j} Q_{j i}}{\pi_{i} Q_{i j}}, 1\right)
$$

Simplification
Remember: $\pi_{j}=b_{j} / B$. Therefore

$$
\alpha_{i j}=\min \left(\frac{b_{j} B Q_{j i}}{b_{i} B Q_{i j}}, 1\right)=\min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right)
$$

The normalization constant B does not play a role in the computation of $\alpha_{i j}$.

Metropolis-Hastings

In summary

- Given Q and b_{j}
- defining α as above
- creates a Markov process characterized by P
- with stationary distribution π.

Metropolis-Hastings

Algorithm

(1) Choose a Markov process characterized by Q.
(2) Initialize the chain with a state $i: t=0, X_{0}=i$.
(3) Simulate the (candidate) next state j based on Q.
(9) Let r be a draw from $U[0,1[$.
(5. Compare r with $\alpha_{i j}=\min \left(\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}, 1\right)$. If

$$
r<\frac{b_{j} Q_{j i}}{b_{i} Q_{i j}}
$$

then $X_{t+1}=j$, else $X_{t+1}=i$.
(3) Increase t by one.

O Goto step 3 .

Example

$$
\begin{aligned}
& b=(20,8,3,1) \\
& \pi=\left(\frac{5}{8}, \frac{1}{4}, \frac{3}{32}, \frac{1}{32}\right) \\
& Q=\left(\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}\right)
\end{aligned}
$$

Run MH for 10000 iterations. Collect statistics after 1000.

- Accept: [2488, 1532, 801, 283]
- Reject: [0, 952, 1705, 2239]
- Simulated: $[0.627,0.250,0.095,0.028]$
- Target: $[0.625,0.250,0.09375,0.03125]$

Outline

(1) Motivation

(2) Introduction to Markov chains
(3) Stationary distributions

4 Metropolis-Hastings
(5) Gibbs sampling

6 Simulated annealing

Gibbs sampling

Motivation

- Draw from multivariate distributions.
- Main difficulty: deal with correlations.

Metropolis-Hastings

- Let $X=\left(X^{1}, X^{2}, \ldots, X^{n}\right)$ be a random vector with pmf (or pdf) $p(x)$.
- Assume we can draw from the marginals:

$$
\operatorname{Pr}\left(X^{i} \mid X^{j}=x^{j}, j \neq i\right), i=1, \ldots, n .
$$

- Markov process. Assume current state is x.
- Draw randomly (equal probability) a coordinate i.
- Draw r from the ith marginal.
- New state: $y=\left(x^{1}, \ldots, x^{i-1}, r, x^{i+1}, \ldots, x^{n}\right)$.

Gibbs sampling

Transition probability

$$
Q_{x y}=\frac{1}{n} \operatorname{Pr}\left(X^{i}=r \mid X^{j}=x^{j}, j \neq i\right)=\frac{p(y)}{n \operatorname{Pr}\left(X^{j}=x^{j}, j \neq i\right)}
$$

- The denominator is independent of X_{i}.
- So $Q_{x y}$ is proportional to $p(y)$.

Metropolis-Hastings

$$
\alpha_{x y}=\min \left(\frac{p(y) Q_{y x}}{p(x) Q_{x y}}, 1\right)=\min \left(\frac{p(y) p(x)}{p(x) p(y)}, 1\right)=1
$$

The candidate state is always accepted.

Example: bivariate normal distribution

$$
\binom{X}{Y} \sim N\left(\binom{\mu_{X}}{\mu_{Y}},\left(\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{X} \sigma_{Y} & \sigma_{Y}^{2}
\end{array}\right)\right)
$$

Marginal distribution:

$$
Y \left\lvert\,(X=x) \sim N\left(\mu_{Y}+\frac{\sigma_{Y}}{\sigma_{X}} \rho\left(x-\mu_{X}\right),\left(1-\rho^{2}\right) \sigma_{Y}^{2}\right)\right.
$$

Apply Gibbs sampling to draw from:

$$
N\left(\binom{0}{0},\left(\begin{array}{ll}
1 & 0.9 \\
0.9 & 1
\end{array}\right)\right)
$$

Note: just for illustration. Should use Cholesky factor.

Example: pdf

$$
\lambda=100
$$

Example: draws from Gibbs sampling

Outline

(1) Motivation

(2) Introduction to Markov chains
3) Stationary distributions

4 Metropolis-Hastings
(5) Gibbs sampling
(6) Simulated annealing

Simulated annealing

Combinatorial optimization

$$
\min _{x \in \mathcal{F}} f(x)
$$

where the feasible set \mathcal{F} is a large finite set of vectors.

Set of optimal solutions

$$
\mathcal{X}^{*}=\{x \in \mathcal{F} \mid f(x) \leq f(y), \forall y \in \mathcal{F}\} \text { and } f\left(x^{*}\right)=f^{*}, \forall x^{*} \in \mathcal{X}^{*} .
$$

Probability mass function on \mathcal{F}

$$
p_{\lambda}(x)=\frac{e^{-\lambda f(x)}}{\sum_{y \in \mathcal{F}} e^{-\lambda f(y)}}, \lambda>0 .
$$

Simulated annealing

$$
p_{\lambda}(x)=\frac{e^{-\lambda f(x)}}{\sum_{y \in \mathcal{F}} e^{-\lambda f(y)}}
$$

- Equivalently

$$
p_{\lambda}(x)=\frac{e^{\lambda\left(f^{*}-f(x)\right)}}{\sum_{y \in \mathcal{F}} e^{\lambda\left(f^{*}-f(y)\right)}}
$$

- As $f^{*}-f(x) \leq 0$, when $\lambda \rightarrow \infty$, we have

$$
\lim _{\lambda \rightarrow \infty} p_{\lambda}(x)=\frac{\delta\left(x \in \mathcal{X}^{*}\right)}{\left|\mathcal{X}^{*}\right|}
$$

where

$$
\delta\left(x \in \mathcal{X}^{*}\right)= \begin{cases}1 & \text { if } x \in \mathcal{X}^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Example

$$
\begin{gathered}
\mathcal{F}=\{1,2,3\} f(\mathcal{F})=\{0,1,0\} \\
p_{\lambda}(1)=\frac{1}{2+e^{-\lambda}} \\
p_{\lambda}(2)=\frac{e^{-\lambda}}{2+e^{-\lambda}} \\
p_{\lambda}(3)=\frac{1}{2+e^{-\lambda}}
\end{gathered}
$$

Example

Simulated annealing

- If λ is large,
- we generate a Markov chain with stationary distribution $p_{\lambda}(x)$.
- The mass is concentrated on optimal solutions.
- As the normalizing constant is not needed, only $e^{\lambda\left(f^{*}-f(x)\right)}$ is used.
- Construction of the Markov process through the concept of neighborhood.
- A neighbor y of x is obtained by simple modifications of x.
- The Markov process will proceed from neighbors to neighbors.
- The neighborhood structure must be designed such that the chain is irreducible, that is the whole space \mathcal{F} must be covered.
- It must be designed also such that the size of the neighborhood is reasonably small.

Neighborhood

Metropolis-Hastings

- Denote $N(x)$ the set of neighbors of x.
- Define a Markov process where the next state is a randomly drawn neighbor.
- Transition probability:

$$
Q_{x y}=\frac{1}{|N(x)|}
$$

- Metropolis Hastings:

$$
\alpha_{x y}=\min \left(\frac{p(y) Q_{y x}}{p(x) Q_{x y}}, 1\right)=\min \left(\frac{e^{-\lambda f(y)}|N(x)|}{e^{-\lambda f(x)}|N(y)|}, 1\right)
$$

Neighborhood

Notes

- The neighborhood structure can always be arranged so that each vector has the same number of neighbors. In this case,

$$
\alpha_{x y}=\min \left(\frac{e^{-\lambda f(y)}}{e^{-\lambda f(x)}}, 1\right)
$$

- If y is better than x, the next state is automatically accepted.
- Otherwise, it is accepted with a probability that depends on λ.
- If λ is high, the probability is small.
- When λ is small, it is easy to escape from local optima.

Heuristic

Issue

- The number of iterations needed to reach a stationary state and draw an optimal solution may exceed the number of feasible solutions in the set.
- The acceptance probability is very small.
- Therefore, a complete enumeration works better.
- The method is used as a heuristic.

