Optimization: principles and algorithms, by Michel Bierlaire
run1906.m
Go to the documentation of this file.
1 %> \file
2 %> Runs example 19.6 with the augmented lagrangian method of \cite Bier15-book
3 %>
4 %> @note Calls \ref augmentedLagrangian
5 %>
6 %> @remark The implementation of the augmented Lagrangian method called by this example is slightly different from the implementation used to generate Tables 19.3 and 19.4, so that the iterates are not the same.
7 %>
8 %> @ingroup Running
9 %> @ingroup chap19
10 %> @author Michel Bierlaire
11 %> @date Wed Mar 25 18:01:15 2015
12 
13 x0 = [-1 ; 0] ;
14 lambda0 = 0 ;
15 eps = 1.0e-8 ;
16 [solution,lambda] = augmentedLagrangian('ex1906',x0,lambda0,eps,1000)
17 
18 
19 
function augmentedLagrangian(in problem, in x0, in lambda0, in eps, in maxiter)
Applies the augmented Lagrangian method to solve subject to where and .
Copyright 2015-2016 Michel Bierlaire